

# ALPHACAM 2020.1 SURFACE CREATION





### Copyright

Copyright © 2019 Hexagon AB and/or its subsidiaries and affiliates. All rights reserved.

Any copyright or other intellectual property right of whatever nature which subsists or may subsist in the presentation and/or content of the programs (including without limitation its look, feel, visual or other non-literal elements) remains the property of Hexagon AB and/or its subsidiaries and affiliates or its licensor(s) absolutely.

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system or translated into any language, in any form or by any means, electronic, mechanical, optical, chemical, manual or otherwise, without the express written permission of Hexagon AB and/or its subsidiaries and affiliates.

Unauthorised reproduction or distribution of these programs or any part thereof is unlawful and may result in civil or criminal penalties.

Windows is a trademark of Microsoft Corporation.

All product names mentioned in this publication, and not listed above, are acknowledged as the trademarks of the respective manufacturers and producers of such products.

Hexagon AB and/or its subsidiaries and affiliates makes no representations or warranties with respect to the contents hereof and specifically disclaim any implied warranties of satisfactory quality or fitness for any particular purpose. Further, Hexagon AB and/or its subsidiaries and affiliates reserves the right to revise this publication and to make changes in the contents hereof without obligation to notify any person of such changes or revisions.

The information contained within this document is subject to change without notice and does not represent a commitment on the part of the vendor. The software described in this document is furnished under a licence agreement and may be used or copied only in accordance with the terms of the agreement.



# Contents

| Copyright                                               | i   |
|---------------------------------------------------------|-----|
| Conventions used in this manual                         | ix  |
| Recommended Operating Systems and Hardware for Alphacam | X   |
| Supported Operating Systems                             | x   |
| ALPHACAM Minimum Specifications                         | x   |
| Hexagon Customer Portal                                 | xi  |
| ALPHACAM esupport                                       | xii |
| Objective                                               | 1   |
| What are work Planes                                    | 1   |
| Work Plane Terminology                                  | 2   |
| Global Datum                                            | 2   |
| Local Datum                                             | 2   |
| Flat Land                                               | 4   |
| Work Volume                                             | 4   |
| Work Volume Creation                                    | 4   |
| Work Plane Commands                                     | 8   |
| Set Work Volume                                         |     |
| Auto Set Work Volume                                    | 8   |
| Auto Set Work Volume on CAD Input                       | 8   |
| Set Work Plane Origin                                   |     |
| Work Plane Properties                                   | 8   |
| Order Work Planes                                       |     |
| Cancel Work Plane                                       |     |
| Make Local Axis Horizontal                              | 8   |
| Work Plane ribbon section                               | 9   |
| Slice through Work Volume                               | 9   |
| 2 Lines for X and Y axes                                | 9   |
| Existing Geometry                                       | 9   |
| Parallel to Current Plane                               | 9   |



| Perpendicular to Current Plane          | 9  |
|-----------------------------------------|----|
| Reverse Current Plane                   | 9  |
| As Current Plane, Different Origin      | 9  |
| By Name                                 | 10 |
| Best Fit Plane through Points           | 10 |
| By Line Element Vector                  | 10 |
| Normal to view                          | 10 |
| From Solid Model Face                   | 10 |
| Create 3D Work Plane                    | 11 |
| What are Surfaces?                      | 12 |
| Surface Creation Methods                | 12 |
| Surface Types                           | 13 |
| Flat Surface-Definition                 | 13 |
| Flat Surface Example                    | 13 |
| Extruded Surface-Definition             | 14 |
| Extruded Surface-Example                | 14 |
| Ruled Surface-Definition                | 15 |
| Ruled Surface-Example1                  | 15 |
| Ruled surface Tutored examples          |    |
| Swept Surface 2 Curves-Definition       | 17 |
| Swept Surface 2 Curves Tutored Example  | 18 |
| Swept Surface 3 Curves-Definition       | 19 |
| Swept Surface 3 Curves tutored example  | 19 |
| Surface of Revolution-Definition        | 20 |
| Revolve Surface tutored example         | 20 |
| Coons Patch-Definition                  | 21 |
| Coons Patch tutored example             | 21 |
| Fillet and Trim Surface-Definition      | 23 |
| Fillet and Trim Surface Tutored Example | 23 |
| Introduction to surfacing Jobs          | 24 |
| Example 1 Tutorial                      | 25 |
|                                         |    |



| Reference Drawing                                          | 25 |
|------------------------------------------------------------|----|
| Base Geometry Creation                                     | 26 |
| Base Geometry for The Taper                                | 29 |
| Taper Surface Creation                                     | 35 |
| The Flat Bottom                                            |    |
| The Curved top                                             | 40 |
| Creating the reference points for the curve                | 41 |
| Create the Curve                                           | 45 |
| Create the Far side reference geometry                     | 48 |
| Arc surface creation                                       | 50 |
| Adding the top surface Fillet                              | 52 |
| The Bottom Fillet                                          | 56 |
| Example 2 Tutorial                                         | 59 |
| Geometry creation                                          | 59 |
| Create a Work Volume for visualisation only                | 61 |
| Create the base geometry shapes                            | 62 |
| Construction Guide lines                                   | 62 |
| Arc Creation                                               | 65 |
| Cross Sections and Work Planes                             | 69 |
| Manipulation of the base geometry to its required location | 69 |
| Work Plane cross section A-A                               | 71 |
| Work Plane cross section B-B                               | 74 |
| Work Plane cross section C-C                               | 76 |
| Preparing the profiles for Surface creation                | 78 |
| Making complete A-A and B-B profiles                       | 79 |
| Surface between section A-A and B-B                        | 80 |
| Making suitable profiles for section C-C surfaces          | 82 |
| Surface between section C-C and the lower arcs             | 84 |
| Creating the opposite half using Mirror                    | 87 |
| Creating the opposite half using Rotate                    |    |
| Creating the lower vertical side surfaces                  | 92 |
|                                                            |    |



| Examples              |  |
|-----------------------|--|
| Elliptical Dish       |  |
| Curved Dish           |  |
| Surface from Sections |  |



# Table of Images

| FIGURE 1 - CUSTOMER SUPPORT PORTAL                                    | XI   |
|-----------------------------------------------------------------------|------|
| FIGURE 2 - ESUPPORT PAGE                                              | XII  |
| FIGURE 3 - VISUAL EXAMPLE IN 3D OF THE CONCEPT OF WORK PLANES         | 1    |
| FIGURE 4 - WORK PLANE ORIGIN COLOUR                                   | 2    |
| FIGURE 5 - LEFT HAND RULE FOR AXIS ROTATION                           | 3    |
| FIGURE 6 - CREATED WORK VOLUME                                        | 4    |
| FIGURE 7 - WORK VOLUME Z VALUES                                       | 5    |
| FIGURE 8 - CREATED WORK VOLUME                                        | 5    |
| FIGURE 9 - SELECTING A LINE TO SLICE THROUGH                          | 6    |
| FIGURE 10 - GENERATED WORK PLANE                                      | 6    |
| FIGURE 11 - WORK PLANE VIEW OPTION                                    | 7    |
| FIGURE 12 - VIEW OPTIONS FROM THE PROMPT BAR                          | 7    |
| FIGURE 13 - CREATE 3D WORK PLANE DIALOGUE                             | . 11 |
| FIGURE 14 - ORIGIN LOCATION                                           | 11   |
| FIGURE 15 - ANGLES OPTIONS                                            | 11   |
| FIGURE 16 - SURFACE CREATION DIALOGUE OPTIONS                         | 12   |
| FIGURE 17 - EDGE TOLERANCE EXPLANATION                                | 12   |
| FIGURE 18 - FLAT SURFACE EXAMPLE IN SHADED MODE                       | 12   |
| FIGURE 19 - FLAT SURFACE EXAMPLE IN SHADED MODE                       | 13   |
| FIGURE 20 - EXTRUDED SURFACE EXAMPLE IN WIRE FRAME                    | 13   |
|                                                                       |      |
| FIGURE 21 - EXTRUDED SURFACE EXAMPLE IN WIREFRAME                     | 14   |
| FIGURE 22 - RULED SURFACE COMPARED TO AN EXTRUDED SURFACE             | 15   |
| FIGURE 23 - RULED SURFACE EXAMPLE GEOMETRIES                          | 16   |
| FIGURE 24 - RULED SURFACES CREATED AND VIEWED IN WIREFRAME AND SHADED | 16   |
| FIGURE 25 - STRAIGHT LINE SWEEP WITHOUT ROTATION                      | 17   |
| FIGURE 26 - STRAIGHT LINE SWEEP WITH ROTATION                         | 17   |
| FIGURE 27 - SWEPT SURFACE POSSIBLE ERRORS                             | 17   |
| FIGURE 28 - SWEPT SURFACE 2 CURVES BASE GEOMETRY                      | 18   |
| FIGURE 29 - SWEPT SURFACE 2 CURVES COMPLETED EXAMPLES                 | 18   |
| FIGURE 30 - SWEPT SURFACE 3 CURVES BASE DRAWING                       | 19   |
| FIGURE 31 - SWEPT SURFACE 3 CURVES COMPLETED EXAMPLES                 | 19   |
| FIGURE 32 - SURFACE OF REVOLUTION BASE DRAWING                        | 20   |
| FIGURE 33 - SURFACE OF REVOLUTION COMPLETED EXAMPLES                  | 20   |
| FIGURE 34 - EXAMPLE OF ROTATION ANGLES                                | 20   |
| FIGURE 35 - COONS PATCH EXAMPLE DRAWING                               | 21   |
| FIGURE 36 - COONS PATCH COMPLETED EXAMPLES                            | 22   |
| FIGURE 37 - FILLET SURFACES EXAMPLE DRAWING                           | 23   |
| FIGURE 38 - WORKED EXAMPLE REFERENCE DRAWING AND COMPLETED EXAMPLE    | 25   |
| FIGURE 39 - EXAMPLE 1 STARTING RECTANGLE                              | 26   |
| FIGURE 40 - WORK VOLUME SELECTION                                     | 26   |
| FIGURE 41 - SETTING THE WORK VOLUME LEVELS                            | 27   |
| FIGURE 42 - COMPLETED WORK VOLUME                                     | 27   |
| FIGURE 43 - WORK VOLUME VIEWED IN XZ                                  | 28   |
| FIGURE 44 - CREATING THE BOTTOM WORK PLANE                            | 29   |
| FIGURE 45 - BOTTOM WORK PLANE IN ISO                                  | 29   |
| FIGURE 46 - BASE RECTANGLE                                            | 30   |
| FIGURE 47 - FILLET SETTINGS                                           | 30   |
| FIGURE 48 - COMPLETED BASE RECTANGLE                                  | 30   |
| FIGURE 49 - INTERNAL OFFSET VALUES                                    | 31   |
| FIGURE 50 - APPLY THE OFFSET TO THE INSIDE                            | 31   |
| FIGURE 51 - SELECT THE ITEM TO MOVE                                   | 32   |
|                                                                       |      |



| FIGURE 52 - BASE POINT SELECTION                                    | 33 |
|---------------------------------------------------------------------|----|
| FIGURE 53 - NEW LOCATION POINT                                      | 33 |
| FIGURE 54 - COMPLETED MOVE                                          | 34 |
| FIGURE 55 - RULED SURFACE OPTION                                    | 35 |
| FIGURE 56 - START SECTION GEOMETRY                                  | 35 |
| FIGURE 57 - FINISH SECTION GEOMETRY                                 |    |
|                                                                     | 36 |
| FIGURE 58 - SURFACE PRECISION OPTION                                | 36 |
| FIGURE 59 - COMPLETE TAPER SURFACE                                  | 37 |
| FIGURE 60 - POLYLINES ADDED                                         | 38 |
| FIGURE 61 - SURFACE CREATION DIALOGUE                               | 38 |
| FIGURE 62 - SURFACE ACCURACY OPTION                                 | 39 |
| FIGURE 63 - COMPLETED RULED SURFACE                                 | 39 |
| FIGURE 64 - LINE FOR WORK PLANE SLICE                               | 40 |
| FIGURE 65 - GENERATED FRONT WORK PLANE                              | 40 |
|                                                                     |    |
| FIGURE 66 - LINE START POINT                                        | 41 |
| FIGURE 67 - LINE UNKNOWN END POINT                                  | 41 |
| FIGURE 68 - DIRECTION OPTIONS                                       | 41 |
| FIGURE 69 - CREATED LINE                                            | 41 |
| FIGURE 70 - ISO VIEW OF FIRST SIDE LINE                             | 42 |
| FIGURE 71 - SELECT THE ITEMS TO MIRROR                              | 42 |
| FIGURE 72 - FIRST POINT OF MIRROR                                   | 43 |
| FIGURE 73 - SECOND POINT OF MIRROR                                  | 43 |
| FIGURE 74 - COMPLETED MIRROR                                        | 44 |
| FIGURE 75 - FIRST POINT OF THE ARC                                  | 45 |
| FIGURE 76 - SECOND POINT OF THE ARC                                 | 45 |
| FIGURE 77 - ARC RADIUS VALUE                                        | 45 |
| FIGURE 78 - FINISHED ARC                                            | 40 |
|                                                                     |    |
| FIGURE 79 - EXTEND BY DISTANCE DIALOGUE                             | 47 |
| FIGURE 80 - EXTEND PROMPT                                           | 47 |
| FIGURE 81 - COMPLETED EXTEND BY DISTANCE                            | 47 |
| FIGURE 82 - <lclick> THE ARC TO SELECT IT</lclick>                  | 48 |
| FIGURE 83 - COPY BASE POINT                                         | 48 |
| FIGURE 84 - COPY NEW POINT                                          | 48 |
| FIGURE 85 - COMPLETED COPY COMMAND                                  | 49 |
| FIGURE 86 - SURFACE CREATION DIALOGUE                               | 50 |
| FIGURE 87 - START SECTION SELECTION                                 | 50 |
| FIGURE 88 - FINISH SECTION SELECTION                                | 51 |
| FIGURE 89 - COMPLETED CURVED SURFACE                                | 51 |
| FIGURE 90 - REVERSED SURFACES                                       | 52 |
| FIGURE 91 - SURFACE CREATION DIALOGUE                               | 53 |
| FIGURE 92 - SELECTING THE START OF THE FILLET SURFACE               | 53 |
| FIGURE 93 - SELECTING THE START OF THE FILLET SURFACE               |    |
|                                                                     | 54 |
| FIGURE 94 - SURFACE FILLET DIALOGUE OPTIONS                         | 54 |
| FIGURE 95 - COMPLETE APPLIED FILLET SURFACE                         | 55 |
| FIGURE 96 - SURFACES REVERSED TO THE CORRECT ASPECT                 | 55 |
| FIGURE 97 - SURFACE CREATION DIALOGUE                               | 56 |
| FIGURE 98 - SELECTING THE START OF THE FILLET SURFACE               | 56 |
| FIGURE 99 - SELECTING THE SECOND SURFACE.                           | 57 |
| FIGURE 100 - SURFACE FILLET DIALOGUE OPTIONS                        | 57 |
| FIGURE 101 - COMPLETED SURFACE MODEL EXAMPLE 1 WITH APPLIED FILLETS | 58 |
| FIGURE 102 - WORKED EXAMPLE REFERENCE DRAWING AND COMPLETED EXAMPLE | 59 |
| FIGURE 103 - SURFACE CREATION EXAMPLE 2 CROSS SECTION INFORMATION   | 60 |
| FIGURE 104 - BASE WORK VOLUME RECTANGLE                             | 61 |
|                                                                     | 01 |



|                                                                                                        | 61       |
|--------------------------------------------------------------------------------------------------------|----------|
| FIGURE 105 - WORK VOLUME DIALOGUE OPTIONS<br>FIGURE 106 - ISO VIEW OF THE WORK VOLUME                  | 61<br>61 |
| FIGURE 107 - MID POINT GUIDE LINES                                                                     | 62       |
| FIGURE 108 - OFFSET OPTIONS FOR THE GUIDE LINE                                                         | 63       |
| FIGURE 109 -FIRST ARC GUIDE LINES                                                                      | 63       |
| FIGURE 110 - ABOVE CENTRE GUIDE LINES                                                                  | 64       |
| FIGURE 111 - FINAL GUIDE IN PLACE                                                                      | 64       |
| FIGURE 112 - ARC START LOCATION                                                                        | 65       |
| FIGURE 113 - ARC END LOCATION                                                                          | 65       |
| FIGURE 114 - ARC RADIUS VALUE                                                                          | 66       |
| FIGURE 115 - FIRST ARC SECTION                                                                         | 66       |
| FIGURE 116 - SECOND ARC START LOCATION                                                                 | 66       |
| FIGURE 117 - SECOND ARC FINISH LOCATION                                                                | 67       |
| FIGURE 118 – SECOND ARC RADIUS VALUE                                                                   | 67       |
| FIGURE 119 - CREATED SECOND ARC                                                                        | 67       |
| FIGURE 120 - FIRST MIRRORED SET.                                                                       | 68       |
| FIGURE 121 - COMPLETED MIRROR                                                                          | 68       |
| FIGURE 122 - ITEMS FOR THE 3D COPY                                                                     | 69       |
| FIGURE 123 - 3D COPY COMPLETE                                                                          | 70       |
| FIGURE 124 - WORK PLANE WITH CORRECT ORIGIN LOCATION<br>FIGURE 125 - WORK PLANE <rclick> MENU</rclick> | 71<br>71 |
| FIGURE 125 - WORK PLANE SKOLICK > MENO<br>FIGURE 126 - WORK PLANE EDIT DIALOGUE                        | 71       |
| FIGURE 120 - WORK PLANE EDIT DIALOGUE<br>FIGURE 127 - WORK PLANES PROPERTIES ON PROJECT MANAGER        | 72       |
| FIGURE 128 - WORK PLANE NAMES IN PROPERTIES                                                            | 72       |
| FIGURE 129 - GEOMETRY SET FOR CROSS SECTION A-A                                                        | 73       |
| FIGURE 130 - CREATED CROSS SECTION A-A                                                                 | 73       |
| FIGURE 131 - WORK PLANE WITH CORRECT ORIGIN LOCATION                                                   | 74       |
| FIGURE 132 - WORK PLANE PROPERTIES COMMAND                                                             | 74       |
| FIGURE 133 - WORK PLANE PROPERTIES DIALOGUE                                                            | 74       |
| FIGURE 134 - GEOMETRY SET FOR CROSS SECTION B-B                                                        | 75       |
| FIGURE 135 - CREATED CROSS SECTION B-B                                                                 | 75       |
| FIGURE 136 - WORK PLANE WITH CORRECT ORIGIN LOCATION                                                   | 76       |
| FIGURE 137 - WORK PLANE PROPERTIES COMMAND                                                             | 76       |
| FIGURE 138 - WORK PLANE PROPERTIES DIALOGUE                                                            | 76       |
| FIGURE 139 - GEOMETRY SET FOR CROSS SECTION C-C                                                        | 77       |
| FIGURE 140 - CREATED CROSS SECTION C-C                                                                 | 77       |
| FIGURE 141 - GEOMETRIES FOR SURFACE CREATION                                                           | 78       |
| FIGURE 142 - JOIN TOGETHER GEOMETRIES AS REQUIRED<br>FIGURE 143 - SURFACE CREATION OPTIONS             | 79<br>80 |
| FIGURE 143 - SELECTED GEOMETRIES FOR PATCH SURFACE                                                     | 80       |
| FIGURE 144 - SURFACE QUALITY OPTIONS                                                                   | 81       |
| FIGURE 146 - COMPLETED FIRST SURFACE                                                                   | 81       |
| FIGURE 147 - BREAK COMMAND OPTIONS                                                                     | 82       |
| FIGURE 148 - BREAKING THE ARC MID POINT                                                                | 82       |
| FIGURE 149 - BREAKING THE 37MM ARC END POINT                                                           | 83       |
| FIGURE 150 - SURFACE CREATION OPTIONS                                                                  | 84       |
| FIGURE 151 - SELECTING THE EDGES FOR THE SURFACE                                                       | 84       |
| FIGURE 152 - SURFACE QUALITY OPTIONS                                                                   | 85       |
| FIGURE 153 - COMPLETED SECOND SURFACE                                                                  | 85       |
| FIGURE 154 - COMPLETE END FORM                                                                         | 86       |
| FIGURE 155 - SURFACES TO MIRROR                                                                        | 87       |
| FIGURE 156 - MIRROR PLANE REFERENCE SELECTOR                                                           | 87       |
| FIGURE 157 - MIRROR REFERENCE BY NAME                                                                  | 88       |



| FIGURE 158 - USING A SPECIFIC WORK PLANE      | 88 |
|-----------------------------------------------|----|
| FIGURE 159 - COMPLETED MIRROR                 | 88 |
| FIGURE 160 - POLYLINE AXIS FOR ROTATION       | 89 |
| FIGURE 161 - ITEMS TO ROTATE                  | 89 |
| FIGURE 162 - SELECTING THE AXIS OF REVOLUTION | 90 |
| FIGURE 163 - ROTATION ANGLE OPTIONS           | 90 |
| FIGURE 164 - HOW MANY TO CREATE               | 90 |
| FIGURE 165 - COMPLETED ROTATE OPTION          | 91 |
| FIGURE 166 - GEOMETRIES FOR VERTICAL SURFACES | 92 |
| FIGURE 167 - SURFACE CREATION OPTIONS         | 93 |
| FIGURE 168 - GEOMETRIES FOR VERTICAL SURFACES | 93 |
| FIGURE 169 - SURFACE QUALITY OPTIONS          | 94 |
| FIGURE 170 - COMPLETE VERTICAL SURFACE        | 94 |



# Conventions used in this manual

To enable you to use the information in this guide effectively, you need to understand the conventions used in the guide to represent differing types of information.

- Buttons on the screen are represented as the button text in square brackets. For example: Click on [OK].
- Keys on the keyboard are represented as bold lettering in between < > characters.
   For example: Press <Enter>.
- Ribbon Tab options are represented as a path with the Ribbon Tab in UPPER case with sub menus Capitalised and separated with an arrow For example: Select FILE > Open.
- Field names are represented as bold text. And the value to be entered will be represented by Bold Text.
   For example: Enter the value 50 in the Offset field. Or

When prompted for the X & Y values type 100,50 <Enter>

Denotes a **<LClick>** or Primary Mouse Button Click.

- Denotes a **<RClick>** or Secondary Mouse Button Click.
- This is a note. It contains useful or additional information.
- + This is a reference. It directs you to another part of the user guide.
  - This is a thought box. It is generally used in exercises and contains a question for you to consider.
    - This is a highlighted note to emphasise information
    - This is a warning; it contains information that you must not ignore.
  - This is a tip. It is generally used in exercises and offers further advice.
- 1. This is the first line of a number list item
- 2. This is the second item of the numbered instructions, which you must
- 3. Follow in sequence.
- This is a list

 $\mathbf{\nabla}$ 

- of items, in which
- The order is not important.



# Recommended Operating Systems and Hardware for Alphacam

### Supported Operating Systems

- Operating System
- 64bit operating systems of the following list are supported,
  - Windows 7 (Professional, Enterprise or Ultimate) SP1 required,
  - Windows 8.1 Professional and Enterprise,
  - Windows 10 Professional and Enterprise.
- Alphacam will install and run on the 'Home' editions of the above operating systems. However, this is
  not recommended, and we cannot guarantee to fix any Alphacam issues specifically related to these
  operating systems.
- Nvidia or ATI Open GL Graphics Card with 1Gb dedicated memory

We recommend you keep up to date with the with the latest Software Updates for the supported operating systems and drivers for your hardware base.

Any Windows Operating system (OS) prior to and including Vista, is not a supported operating system.

### ALPHACAM Minimum Specifications

The latest minimum specification can be found at http://www.alphacam.com/systemrequirements

This minimum specification is to run any **ALPHACAM Essential** module, you will need to considerably increase the specification if you are working with solid models and producing the NC code for 3D machining and 3, 4, or 5 axis simultaneous machining strategies.

Your minimum specifications should be the fastest processor with the most memory and the highest specification video card that your budget will allow.

If using Autodesk Inventor Files, please check the current Inventor View requirements at autodesk inventor view



# Hexagon Customer Portal

At Hexagon, we strive to provide you and your business with first class technical support and services. The Customer Support Portal allows you the tools you need to receive the best from your software. In addition to generating new and updating existing support cases, the portal allows you:

- Unlimited user logins for your company.
- Access to all your licenses for easy reference.
- Get the latest releases and software update at the touch of a button.
- View what is available on your support and maintenance schedule.
- Reference to the Customer Support Charter at any time.
- View the status of your Technical Support cases.
- View all purchased Professional Services like Training and Consultancy.

| Current User |                     |                             |                           |                                     |                    |                 | Support Status: St    |
|--------------|---------------------|-----------------------------|---------------------------|-------------------------------------|--------------------|-----------------|-----------------------|
|              | Home                |                             |                           |                                     |                    |                 | Site Map Log C        |
| Search       | Licensing           | Support                     | Community                 | Reports                             | Downloads          | Account Details | Help                  |
| Recent Items |                     |                             |                           |                                     |                    |                 |                       |
|              | Software Licenses   | 111 Technical Support Cases | Customer Community Forums | Technical Support Metrics           | K Software         | 🔏 Login Details | How to guides         |
|              | S Manual Revocation | Support Charter             | 🗳 FAQ                     | Professional Services               | Training Materials | Company Details | Customer Notification |
|              |                     | Remote Support              | Knowledge Base            | O <sup>i</sup> Maintenance Schedule |                    |                 | 💐 Portal Help Videos  |
|              |                     |                             |                           | 👻 License History                   |                    |                 | License Documentation |
|              |                     |                             |                           | 💱 Support Status                    |                    |                 |                       |
|              |                     |                             |                           |                                     |                    |                 |                       |
|              |                     |                             |                           |                                     |                    |                 |                       |
|              |                     |                             |                           |                                     |                    |                 |                       |
|              |                     |                             |                           |                                     |                    |                 |                       |



For the Hexagon Customer Portal visit customers.ps.hexagonmi.com



# **ALPHACAM** esupport

Another location to gain valuable information about using the software or asking other experienced users for assistance are the esupport forums.

| esupport.verosoftware.com/alph | hacam/                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                | HEXAGON = Q Search                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                | ALPHACAM<br>Alphacam - Blog Forums Knowledge Base Videos Training Sub-Groups ~ More                                                                                                                                                                                                                                                                                                                              |  |  |
|                                | Forum Rules                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|                                | The Alphacam Customer Community Forum membership is formed of knowledgeable<br>Alphacam resellers and users from around the world with diverse backgrounds and experiences.<br>Alphacam's Customer Community Forums is a place to join conversations, collaborate with others,<br>and share valuable information you won't find anywhere else. We ask that you please follow these<br>simple posting guidelines. |  |  |
|                                | Rules of the eCommunity                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|                                | The #1 rule is to discuss Alphacam technology in a constructive way.                                                                                                                                                                                                                                                                                                                                             |  |  |
|                                | Alphacam's technical support, bugs, development tasks, or reseller support should be taken directly to your Alphacam reseller.<br>Alternately log a support case here                                                                                                                                                                                                                                            |  |  |
|                                | While debating and discussion is fine, we will not tolerate rudeness, profanity, insulting posts or personal attacks.                                                                                                                                                                                                                                                                                            |  |  |
|                                | You agree that the administrative staff of the Customer Community Forums reserve the right to remove, edit, move or close any thread, private message, forum, social group, or any other aspect of the site for any reason we see fit. You agree that the administrative staff has the right disable, ban, delete, or modify user accounts for any reason.                                                       |  |  |
| Figure 2 - esupport page       |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |

Asking a question of the community, using the knowledge base or other available information links could save you time if you have a problem that someone else may already have supplied a solution for.



### Objective

The purpose of this training course is to enable you to create, manipulate and machine Surfaces. It is the capabilities of the machine tool that places restrictions on the position and orientation of the surface and the type of machining strategies that can be used.

In order to create surfaces, you have to be able to create the surface definition edge geometries in their respective work planes.

### What are work Planes

Work planes are 2 Dimensional sections through 3D work space. The 2 D section represents the working Z Zero plane.

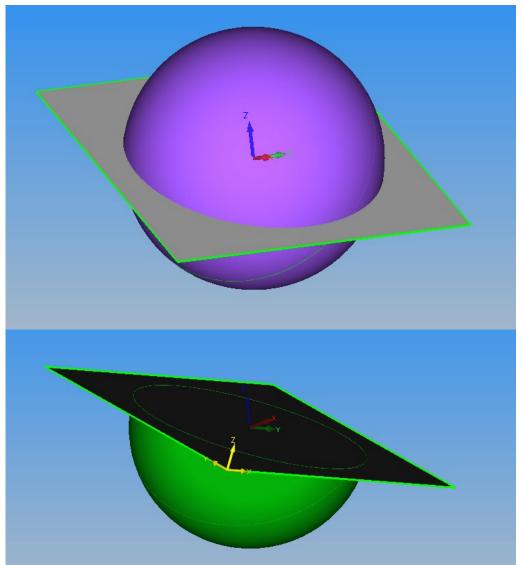



Figure 3 - Visual example in 3D of the concept of Work Planes



### Work Plane Terminology

#### **Global Datum**

Global X0, Y0, Z0, shown in Red(X), Green(Y) and Blue (Z) also known as the World Coordinate System WCS. This is the equivalent on the machine datum (G92).

#### Local Datum

Local X0, Y0, Z0, shown in YELLOW, also known as the User Coordinate System UCS. This is the equivalent of machine datum shift (G54, G55, G56).

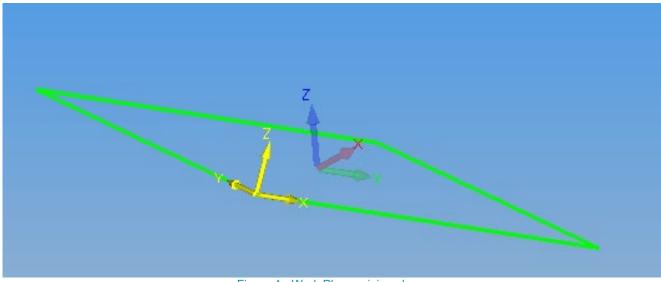
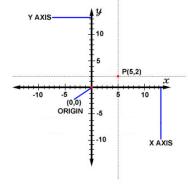
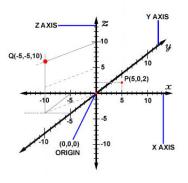





Figure 4 - Work Plane origin colour

Alphacam works using a Cartesian coordinate system.



2 DIMENSIONAL CARTESIAN COORDINATE SYSTEM



<sup>3</sup> DIMENSIONAL CARTESIAN COORDINATE SYSTEM



Orientation of the Coordinate System obeys the Left hand rule.

This has implications for the use of the Rotate command, where the CW and CCW directions are always set when looking down the axis back towards the origin point around which the rotation will take place.

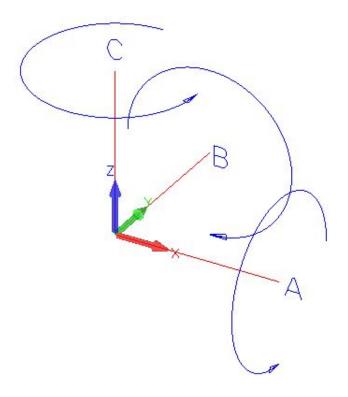



Figure 5 - Left hand rule for axis rotation



### Flat Land

The term **Flat-Land** is used to represent the default 2D working environment. It is similar to Paper Space a piece of paper on the ground.

You cannot remove Flat-Land it is ALPHACAM's default drawing sheet.

Flat-Land is the default drawing status of ALPHACAM; it is the same as an infinite sheet of paper laid flat on the ground, upon which normal 2D geometry and tool paths are created. Flat-Land's coordinate dimensions are with respect to the global X0, Y0, Z0 datum WCS.

### Work Volume

The work volume is a rectangular bounding area enclosing the 3D working envelope. The purpose of the work volume is to give a visual perspective of the bounding area.



The creation of a work volume is not mandatory however it can be beneficial to inexperienced users. (the panel macros create a work volume).

### Work Volume Creation

The work volume is created by converting a 2D Rectangle into a work volume and adding top and bottom Z values. The work volume is created with respect to global X0, Y0, Z0, datum WCS.

The command **3D > Set Work Volume** converts a 2D rectangle into a work volume. Create a rectangle from **X0**, **Y0** to **X200**, **Y100**.

Select 3D > Set Work Volume And pick the rectangle.

The define work volume dialogue will be displayed, set the Top Z to 0 and the Bottom Z to -100.

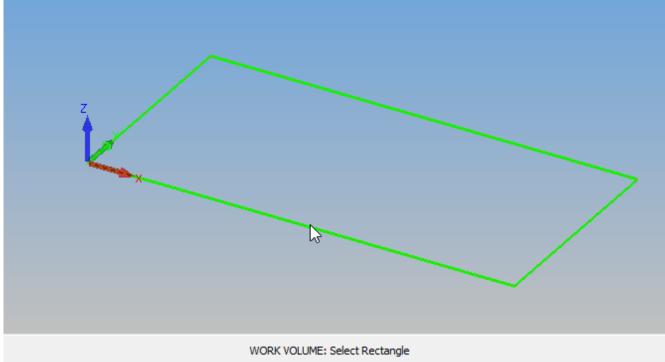



Figure 6 - Created Work Volume



The Define Work Volume dialogue will be displayed set the Top Z to **0** and the Bottom Z to **-100**.

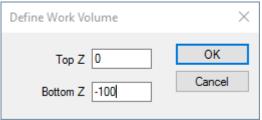



Figure 7 - Work Volume Z values

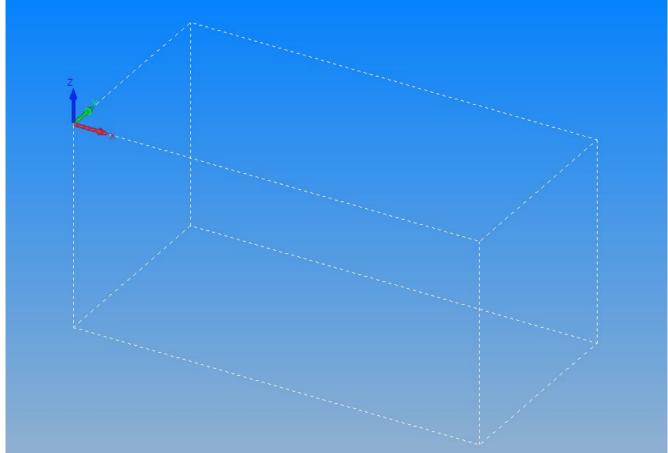



Figure 8 - Created Work volume





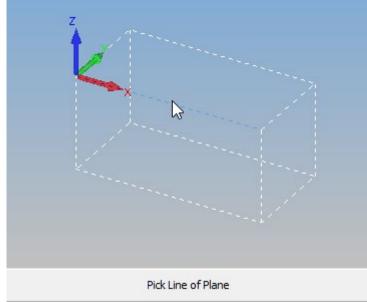



Figure 9 - Selecting a line to Slice Through



Figure 10 - Generated Work Plane

This example shows how using a Work Volume can allow simple side and end face work planes to be created.



Select VIEW > Work Plane bis changes the view to only show the current work plane.



Use the View options to see how they change the display.



Figure 12 - View options from the prompt bar



### Work Plane Commands

# Set Work Volume

This allows you to select an existing rectangle to convert to a work volume by setting the top and bottom Z values as shown.

There are some additional Add-ins that automate the work volume creation.

### Auto Set Work Volume

This will automatically create a work volume bounding the extremities of, geometries (3D or with Z levels), or the toolpaths (including rapids).

### Auto Set Work Volume on CAD Input

This will automatically create a work volume bounding the extremities of, geometries (3D or with Z levels). Auto set work volume does not work on 2D geometries.

It is worth considering the orientation of the part when using the Auto Set option. If the item is not aligned to suit manufacture when created then the created work volume on import will not be correct once the item is set correctly.

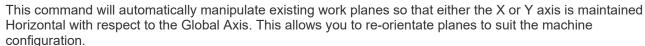
# Set Work Plane Origin

This allows you to change the position of the local plane UCS origin point with respect to the global WCS origin position. The position set MUST lie on the active work plane.

# Work Plane Properties



This allows you to set: The reference name/number of the plane as it is displayed in the project manager page. The Offset Number that is used by the post processor to reference the plane in the NC Code.


# Order Work Planes

This option allows for the ordering of work planes to suit the shortest movement for toolpaths on differing work planes when using 4 and 5 axis moves.



This returns the status of Alphacam to **Flat-Land**. It is the same as picking "**Flat-Land**" name on the Work Plane Project Manager Page.

# Make Local Axis Horizontal





### Work Plane ribbon section

This provides access to the commands that allow work planes to be created and activated. A work volume is not required to define work planes.

Activation of work planes can also be done from the Work Plane Project Manager page.

### Slice through Work Volume



This allows any line geometry to be used as a knife which cuts through 3D space to create the work plane (2D section through 3D space).

Ê

The Slice command only works in one of the Ortho Views (XY, XZ, ZY) and any Slice in the ISO view will always be in the global Z direction.

When using the Slice command, you do not have control over the orientation of the local axes, it is important that you ensure the axes directions are suitable for your machine tool.

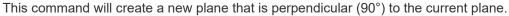
### 2 Lines for X and Y axes



This allows you to use two lines whose ends are coincident, that lay in different work planes, to define a work plane. The first line selected defines the new work planes X axis orientation. The second line selected indicates the new work planes Y direction. The lines meeting point is used for the planes origin position.






This allows you to pick geometry on screen and activate the plane on which the geometry is associated. If the command does nothing, then the geometry picked is in "Flat-Land". No new work plane is created.

### Parallel to Current Plane



This will create a new work plane that is parallel to the currently active plane. The new plane is created the specified distance from the current plane in the Z axis direction. Positive or negative direction is allowed.

### Perpendicular to Current Plane





This command will flip the current planes axes through the 4 possible orientations.

### As Current Plane, Different Origin 💆

This command will duplicate the current plane and allow you to set a new local origin.



# By Name

This will display a dialogue showing the names of all the existing planes. The dialogue allows you to activate a plane from the list, (same as picking the name in the Project Manger page), or Clear, (delete all), Empty work planes. This is very useful if you create a work plane by mistake.

#### Best Fit Plane through Points.



This will activate a work plane that fits evenly through the points in a 3D spline or polyline the spline or polyline must contain at least 6 points. This option is used primarily when there are no natural 2D options or planar model faces available.



Polylines and 3D splines exist in 3D space and NOT on work planes.

### By Line Element Vector 🏲

This will create a work plane perpendicular to one end or the other of a selected 2D geometry line or 3D polyline. The direction and location of the UCS origin is determined by the direction in which the original element has been drawn and the selected answers to the creation dialogue options.



This will create a work plane in the exact direction that the user is viewing the drawing or solid model. This method of creating a work plane can prove very useful when no reference geometry is available, no 2D or 3D items or the solid model does not have a flat face.



This will create a work plane that lies on the flat model face, or perpendicular to a model cylinder hole, selected.





This method of work plane creation uses direct input rather than item selection.

| Create 3D Work Plane                       | ×                                                                |
|--------------------------------------------|------------------------------------------------------------------|
| Global Origin X                            | 6                                                                |
| Y 0<br>Z 0                                 |                                                                  |
| Angles<br>Rotation Angle 0<br>Tilt Angle 0 | Work Plane Properties<br>Work Plane Name<br>1<br>Offset Number 0 |
| Help                                       | OK Cancel                                                        |

Figure 13 - Create 3D Work Plane dialogue

Using the X, Y & Z options, you can directly state where the work plane origin is to be located.



Figure 14 - Origin location

| Angles |                |   |
|--------|----------------|---|
|        | Rotation Angle | 0 |
|        |                |   |
|        | Tilt Angle     | 0 |
|        |                |   |

Figure 15 - Angles options

Using the browse option

The **Rotation** and **Tilt** angles allow you to specifically set the required values, useful if you have a limited amount of movement on a machine head or table.

| • | ••• |  |
|---|-----|--|

will allow you to set any to these options directly from the part.



# What are Surfaces?

A Surface is the mathematical description of the outer skin of an area. A surface is created by effectively stretching a skin between the edges defining the area.

Surfaces have no thickness and cannot be seen when looking perpendicular to the edge.
Surface Creation Methods
3D Surfaces can be created by one of eleven methods depending upon the edge categories.

Surfaces

Swept Surface

Swept Surface (2 Curves)

Swept Surface (3 Curves)

Buled Surface (2 Curves)

Surface of Bevolution

| () Coons Patch (4 Curves)  | Coons Patch (3 Curves) |  |  |
|----------------------------|------------------------|--|--|
| Ruled Surface (2 Curves    | Surface of Revolution  |  |  |
| 🔘 Fillet Between 2 Surface | s 🔘 Tri-Corner Fillet  |  |  |
| Surface from Sections      | C Extruded Surface     |  |  |
| Flat Surface               |                        |  |  |
| Edge Tolerance 0.02        |                        |  |  |
| OK Cancel                  |                        |  |  |

Figure 16 - Surface creation dialogue options

When creating a surface, you have to specify an edge tolerance, the smaller the tolerance the more detail is defined in the surface; however, this increases the storage size of the surface.

The edge tolerance should be set with respect to the size and detail of the surface.

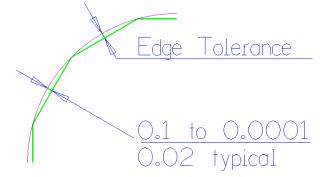



Figure 17 - Edge tolerance explanation

Setting the edge tolerance to 0.1 would be ok for something like a car roof whereas 0.005 would be required for the detail on the end of a 20mm diameter electrode.

Surfaces should not contain sharp corners; if a sharp corner is required then it must be created using two surfaces.



# Surface Types

### Flat Surface-Definition

A **Flat Surface** is created within a closed boundary that lies in one plane. Its main purpose is to easily create a blanking surface. Flat surfaces should not be used if it is required to be trimmed or filleted.

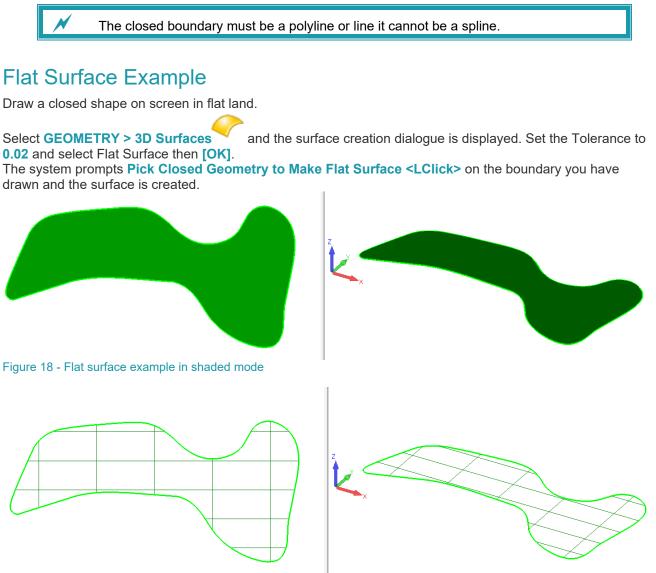
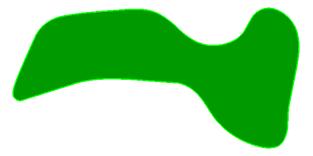



Figure 19 - Flat surface example in wire frame

When the surface is not shaded, the parameter lines are displayed.



### **Extruded Surface-Definition**


The **Extruded Surface** command will create a flat surface for each element in the profile selected. Each surface is created with respect to the Z axis of the plane on which the geometry profile is created.



### Extruded Surface-Example

Using the same profile as use in the flat surface creation Select **GEOMETRY > 3D Surfaces** and the surface creation dialogue is displayed. Set the Tolerance to **0.02** and select **O Flat Surface** then **[OK]**.

The Extrude Surface Distance dialogue is displayed set the distance to -20 then [OK]. The system prompts Pick Geometry to Extrude <LClick> on the profile and the extruded surfaces are created.



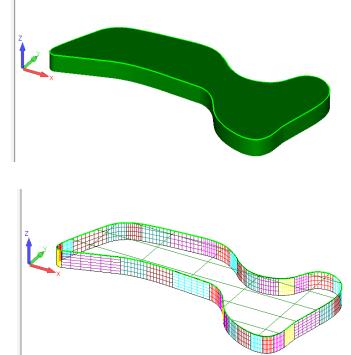



Figure 20 - Extruded surface example in shaded mode



When the surface is not shaded, the parameter lines are displayed.

The extrude edge is made up of as many surfaces as there are elements in the whole profile.



### **Ruled Surface-Definition**

The Ruled Surface command will create one surface which is suspended between two edges.

The edge curves can be open or closed; they can lie in different work planes, and be lines, polylines, splines or other another surface edge. The surface is created by connecting the start points of each curve together and the end points of each curve together with a straight line (hence the term Ruled Surface).

If when using open geometries, they are created in different directions that would result in a twisted surface a warning dialogue is displayed which will automatically reverse one of the edges.

When using closed geometries, you need to ensure the start points are perpendicular otherwise the surface will be twisted.

### Ruled Surface-Example1

Use the current geometry as the previous examples.

Select EDIT > Auto 2D 3D > 3D this causes any manipulation to be a 3D manipulation.

Select EDIT > Copy for then select the geometry profile.

For the Base Point use X0, Y0, Z0 then for the new position use X0, Y0, Z20 and the geometry profile will be created on a work plane 20mm up, <**RClick>** or **[Esc]** the copy command.

Select **GEOMETRY > 3D Surfaces** and the surface creation dialogue is displayed. Set the Tolerance to **0.02** and select Ruled Surface (2 curves) then **[OK]**.

The system prompts **Pick Start Section <LClick>** on the original profile.

The system prompts Pick Finish Section <LClick> on the new profile.

The **Generate Surface** dialogue is displayed requesting the number of steps along first edge; this defines the number of control points on the surface, **[OK]** and use the default value, and the surface is created.

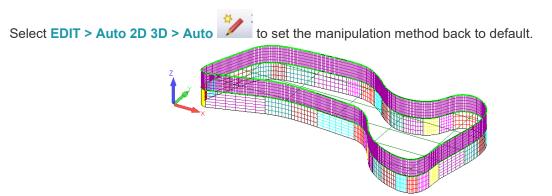



Figure 22 - Ruled surface compared to an Extruded surface

Notice the difference between the extruded surfaces and ruled surface.

圖



#### Ruled surface Tutored examples

Open the example drawing from the ".....\ALP TRG 206 Surface Creation 2020\Examples\Drawings\Ruled Surface Geometries" Set the view to ISO.

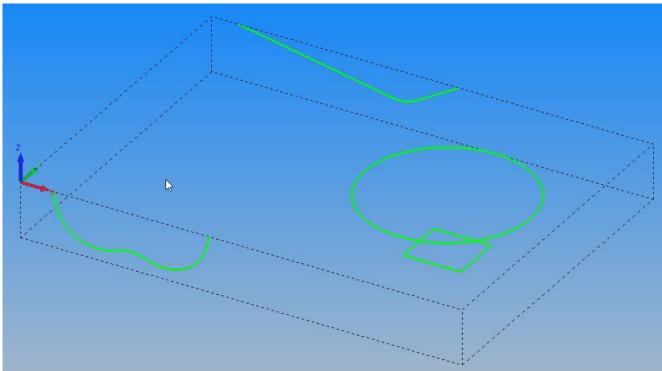



Figure 23 - Ruled surface example geometries

These edges are created in different work planes and will be used to create the surfaces below.

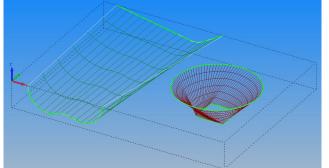
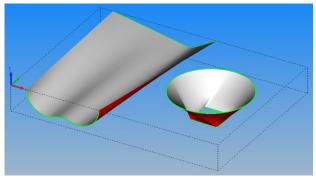




Figure 24 - Ruled surfaces created and viewed in wireframe and shaded





### Swept Surface 2 Curves-Definition

The **Swept Surface (2 curves)** command will create a surface by sweeping one curve along and in the direction of the second curve.

A dialogue asks if the curve being swept is to be rotated to keep the section element normal to the curve of sweep. The result will be different depending upon the option selected.

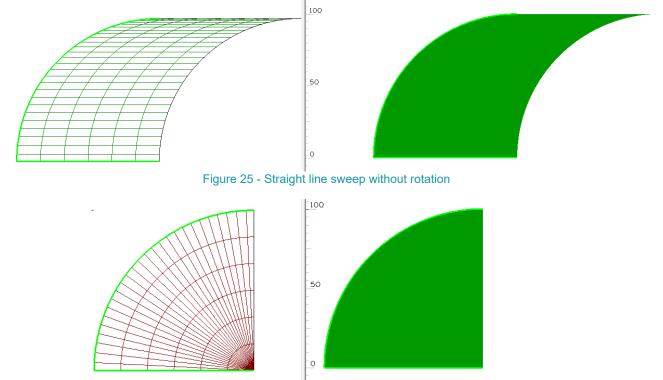



Figure 26 - Straight line sweep with rotation

Care is required with tight bends in the geometry path to ensure they do not cause the edge of the swept surface to turn inside out. (To travel back on itself).

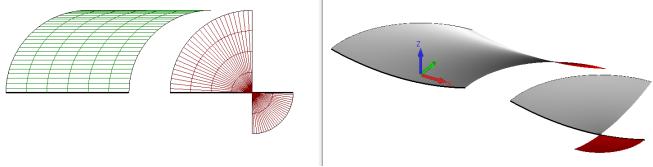



Figure 27 - Swept surface possible errors



### Swept Surface 2 Curves Tutored Example

#### Open the example drawing from the ".....\ALP TRG 206 Surface Creation 2020\Examples\Drawings\Swept surface 2 Curves"

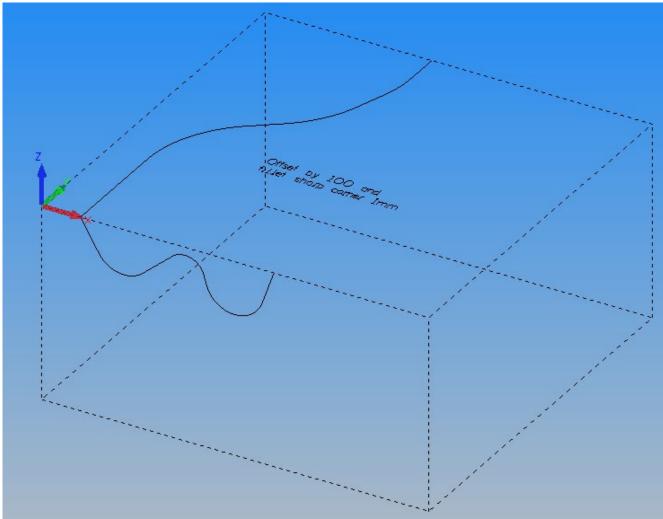



Figure 28 - Swept Surface 2 Curves base geometry

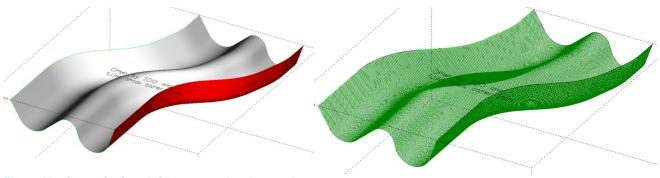



Figure 29 - Swept Surface 2 Curves completed examples



### Swept Surface 3 Curves-Definition

A defined edge (Curve1) is swept along a defined geometry path (Curve2) changing form into another defined edge (Curve 3).

Care is required with tight bends in the geometry path to ensure they do not cause the edge of the swept surface to turn inside out, (To travel back on itself).

#### Swept Surface 3 Curves tutored example

#### Open the example drawing from the

"......\ALP TRG 206 Surface Creation 2020\Examples\Drawings\Swept surface 3 Curves"

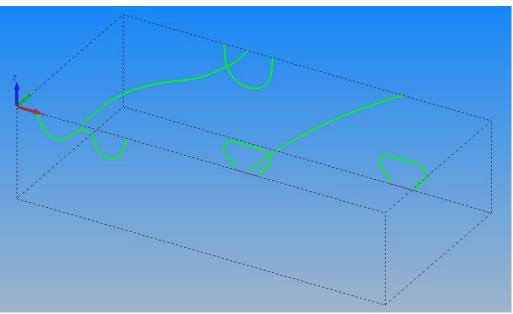



Figure 30 - Swept Surface 3 Curves base drawing

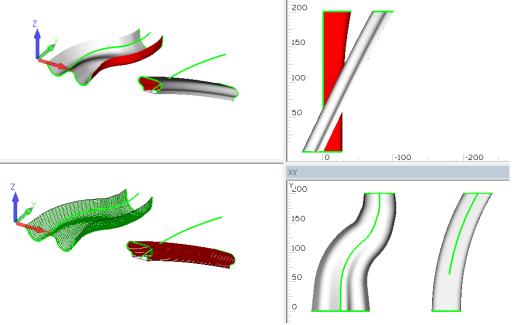


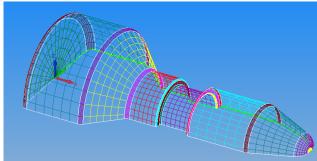

Figure 31 - Swept Surface 3 Curves completed examples



### Surface of Revolution-Definition

A Revolved surface is the surface generated when a Profile is revolved about an axis.




### Revolve Surface tutored example

Open the example drawing from the

"......\ALP TRG 206 Surface Creation 2020\Examples\Drawings\Revolved Geometries"



Figure 32 - Surface of Revolution base drawing



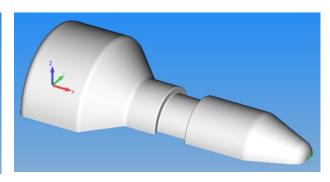



Figure 33 - Surface of Revolution completed examples

Rotation directions

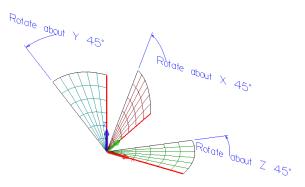



Figure 34 - Example of rotation angles



### **Coons Patch-Definition**

A Coons Patch is the surface generated from 3 or 4 edges.

The edges can lie in different work planes, but they **MUST** be coincident at the ends.

#### Coons Patch tutored example

Open the example drawing from the

#### "......\ALP TRG 206 Surface Creation 2020\Examples\Drawings\Coons Patch Edges"

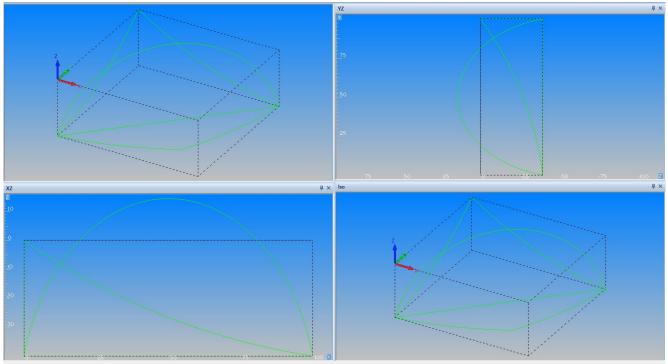



Figure 35 - Coons Patch example drawing



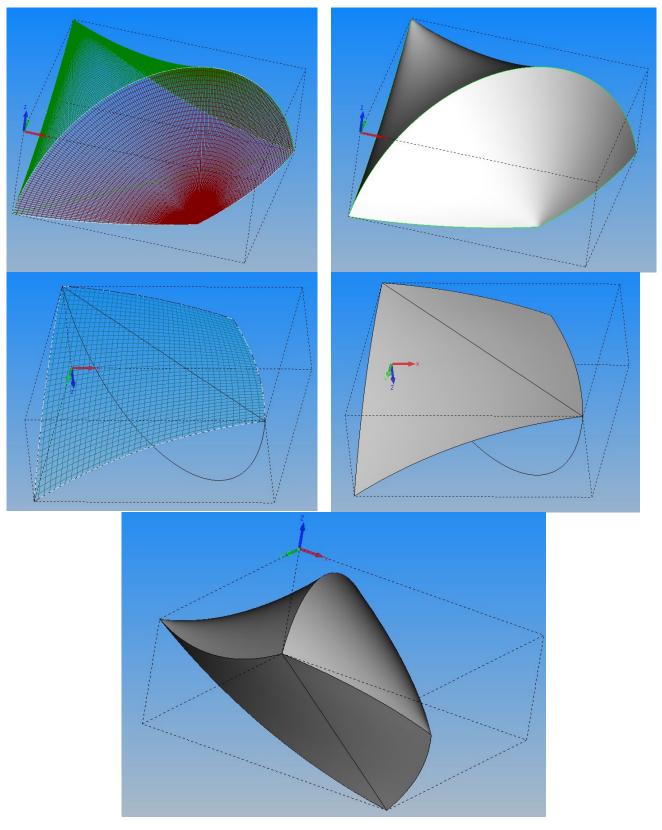



Figure 36 - Coons patch completed examples



## Fillet and Trim Surface-Definition

It is possible to fillet and trim intersecting surfaces.

When fillets are applied to open ended surfaces, the fillet radius can be different at the start and end. If the fillet is a closed fillet the start and end radius MUST be set the same. Fillets are always produced between the tool sides (GREY) of the surface.

#### Fillet and Trim Surface Tutored Example

#### Open the example drawing from the

"......\ALP TRG 206 Surface Creation 2020\Examples\Drawings\Fillet surfaces 1"

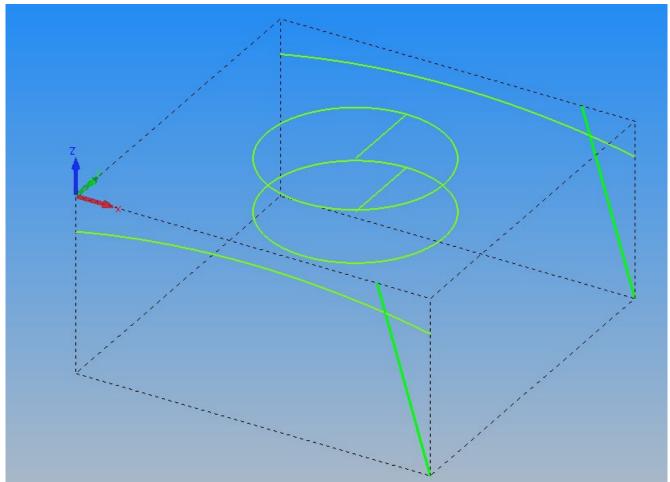


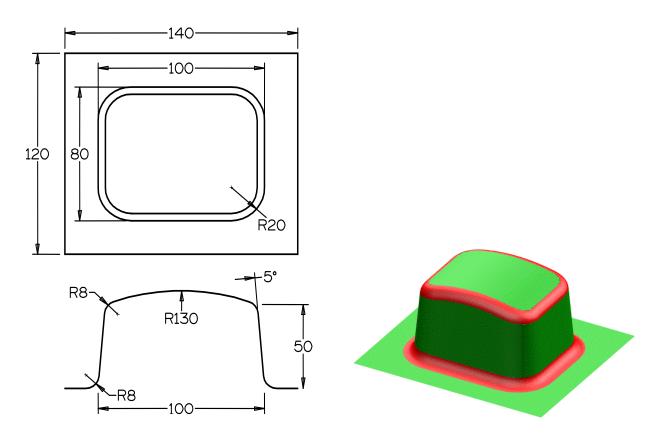

Figure 37 - Fillet Surfaces example drawing



## Introduction to surfacing Jobs

To create the first example, it is first necessary to recognise the types of surfaces required. This will depend upon the machining strategy that is to be used. For example, if a surface were to be machined on the top of a block it would be practical to define the surface such that it overlapped the edges of the actual material. In some cases, where the surface has to be created much bigger than the area to be machined, the machining can be restricted within a boundary.

When working with work volumes and work planes, remember that the geometry manipulation commands **Move, Copy, Rotate, and Mirror** ... work differently.


When a work plane is active the manipulation commands work as normal 2D commands. The manipulation takes place within the work plane.

When a work plane is NOT active the manipulation commands work as 3D commands. The manipulation takes place within the work volume.



## **Example 1 Tutorial**

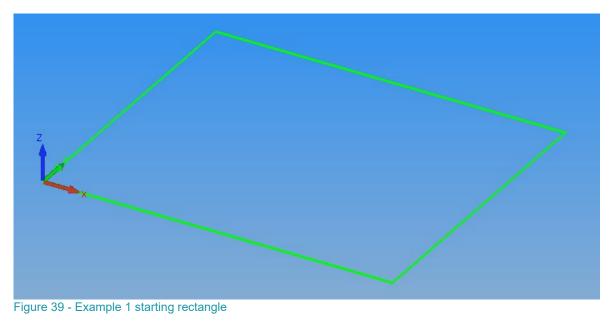
## **Reference Drawing**



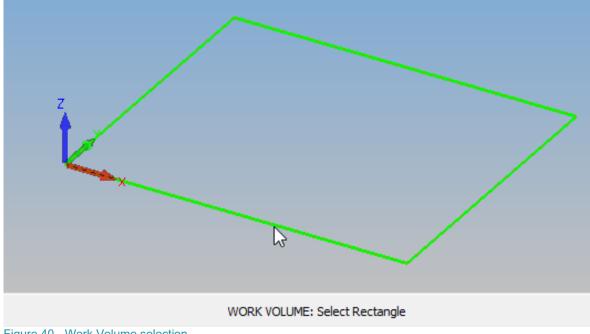
#### Figure 38 - Worked example reference drawing and completed example

From the drawing you have to decide how many and what type of surfaces need to be defined in order to generate the surface model.

This can be made up from either 3 ruled surfaces, 3 swept surface 2 curves, or a combination of ruled and swept together with 2 fillets.


These notes will create the surfaces as ruled surfaces.






## **Base Geometry Creation**











Using the rectangle set the work volume top to **0** Bottom to **-70**.

|   | Define Work Volume      | ×            |  |
|---|-------------------------|--------------|--|
| z | Top Z 0<br>Bottom Z -70 | OK<br>Cancel |  |
|   |                         |              |  |

Figure 41 - Setting the Work Volume levels

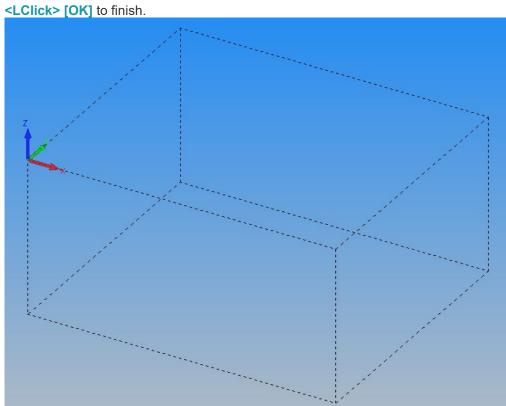
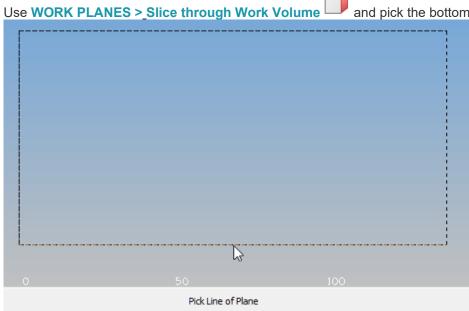



Figure 42 - Completed Work Volume



Select VIEW > XZ

|  | •      |
|--|--------|
|  | 1 - I  |
|  | 1      |
|  | 1      |
|  |        |
|  | ( L    |
|  |        |
|  |        |
|  |        |
|  | ٠.,    |
|  | ۱. I   |
|  | ۱. I   |
|  | ۱. I   |
|  | 1 .    |
|  | 1.     |
|  | 1      |
|  | 1      |
|  | 1      |
|  | ( III) |
|  | ( III) |
|  |        |
|  |        |
|  | · .    |
|  | ۰.,    |
|  | ۱. I   |
|  | ۱. I   |
|  | ۱. I   |
|  | 1 - I  |
|  | 1      |
|  | 1      |
|  | 1      |
|  | í .    |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  |        |
|  | ۱. I   |
|  | ۱. I   |
|  | ۱. I   |
|  | 1      |
|  | 1      |
|  | 1      |
|  | 1      |
|  | 1      |
|  | i      |
|  |        |
|  |        |
|  |        |


Figure 43 - Work Volume viewed in XZ



#### Base Geometry for The Taper

To set the bottom of the work volume as the current plane.

and pick the bottom line of the Work Volume.





Select Iso view

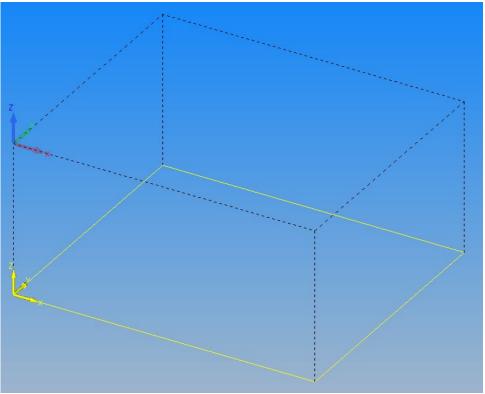



Figure 45 - Bottom work plane in ISO





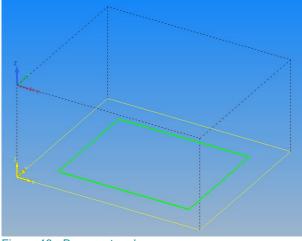



Figure 46 - Base rectangle

Use EDIT > Fillet **I** and apply the option to all corners of the rectangle.

| Fillet                                                                                      | $\times$ |
|---------------------------------------------------------------------------------------------|----------|
| Fillet Radius 20<br>Corners<br>O Individual (Pick 2 Elements)<br>All (As set by Ghost Tool) |          |
| Bubble Fillet Reverse Fillet OK Cancel                                                      |          |



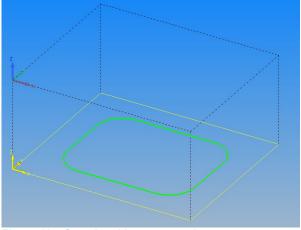
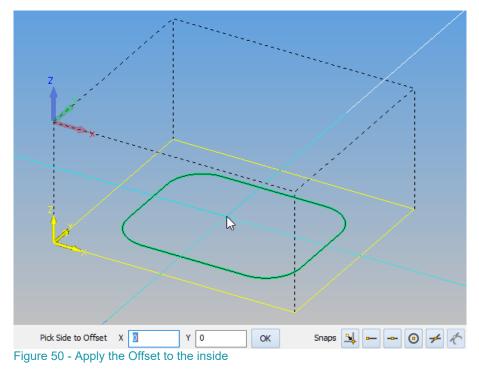



Figure 48 - Completed base rectangle




Using EDIT > Offset  $\gamma$  apply the following values to create an internal offset.

| Offset ×                   |  |
|----------------------------|--|
| Amount                     |  |
| Distance TAN(5)*70         |  |
| Offset to Point            |  |
| Offset on both sides       |  |
| What                       |  |
| ◯ Line / Arc               |  |
| ○ Surface                  |  |
| Offset as Geometry         |  |
| Delete Original            |  |
| Keep Toolpath Associations |  |
| OK Cancel                  |  |

Figure 49 - Internal offset values

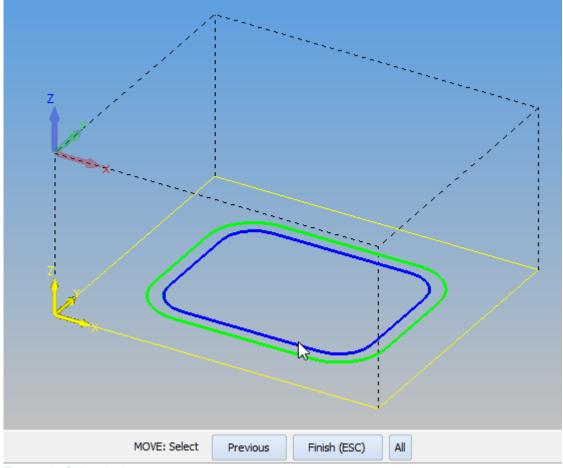
This will provide geometry, that when positioned on the top of the work volume, 70mm above the current rectangle location, will allow the creation of a ruled surface forming the 5° taper. **LClick>** [OK] to continue, **LClick>** the rectangle to select it.



<LClick> inside to place the new geometry. <RClick> to finish.



Select WORK PLANES > Cancel work plane


3D

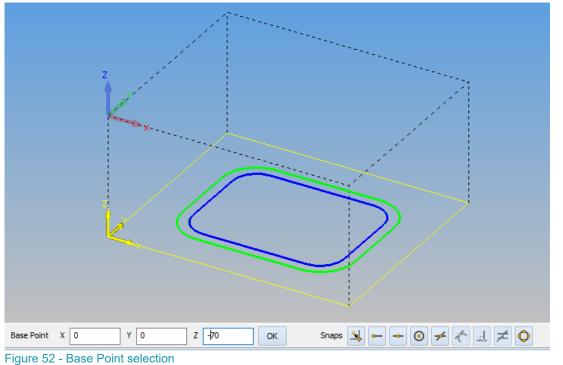
We now need to move the inner geometry from its current location to the correct position 70mm above where it is. To do this we must force a 3D move on the geometry which is currently only a 2D item.

Use EDIT > Auto/2D/3D > 3D

to set the drawing mode to 3D.

Select EDIT > Move






<LClick> the inner shape as the item to Move.

<RClick> or [Finish (ESC)] to continue.



For the base point use **X0**, **Y0**, **Z-70**,



For the new location, set X0, Y0, Z0

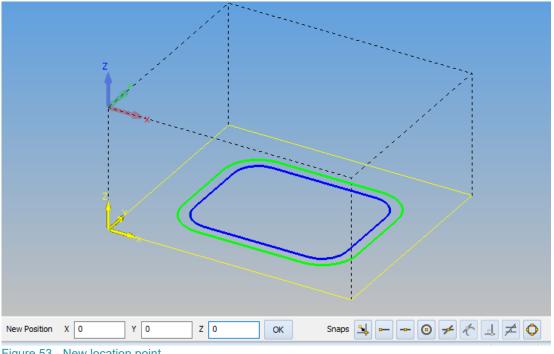



Figure 53 - New location point



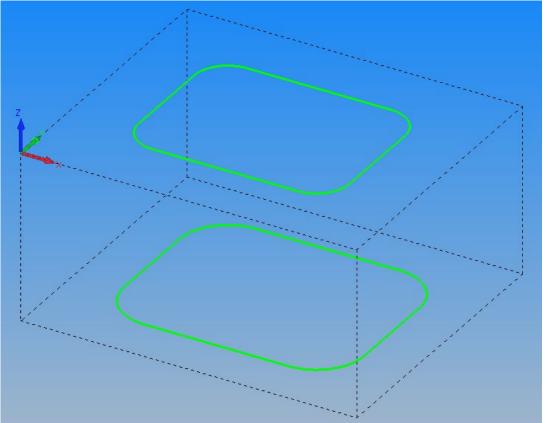



Figure 54 - Completed Move



## **Taper Surface Creation**

#### Select GEOMETRY > 3D Surfaces

| 3D Surfaces                 |                            | × |  |  |
|-----------------------------|----------------------------|---|--|--|
| Туре                        |                            |   |  |  |
| O Swept Surface (2 Curves)  | O Swept Surface (3 Curves) |   |  |  |
| O Coons Patch (4 Curves)    | O Coons Patch (3 Curves)   |   |  |  |
| Ruled Surface (2 Curves)    | O Surface of Revolution    |   |  |  |
| ◯ Fillet Between 2 Surfaces | ◯ Tri-Comer Fillet         |   |  |  |
| O Surface from Sections     | O Extruded Surface         |   |  |  |
| ◯ Flat Surface              |                            |   |  |  |
| Edge Tolerance 0.02         |                            |   |  |  |
| OK Cancel                   |                            |   |  |  |

Figure 55 - Ruled Surface option

# Set the option to ⊙ **Ruled Surface (2 curves** <**LClick> [OK]** to continue.

<LClick> the bottom geometry as the Start Section.

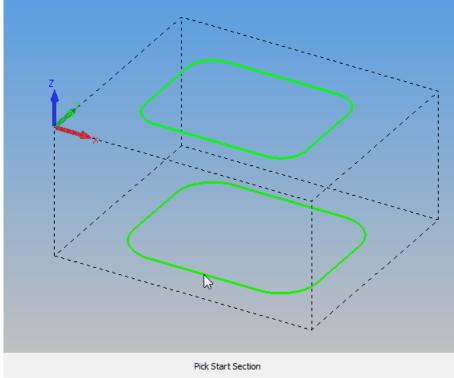



Figure 56 - Start Section Geometry



<LClick> the top geometry as the Finish Section.

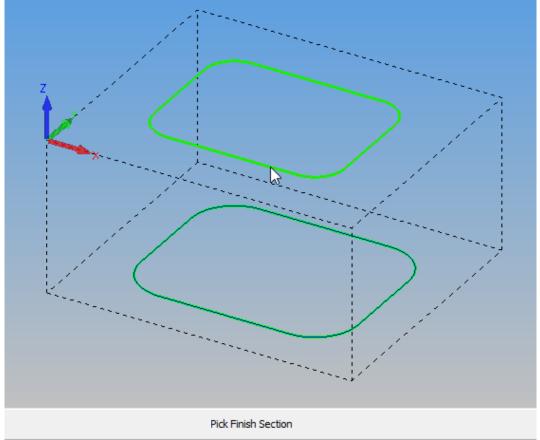



Figure 57 - Finish Section Geometry

You are then presented with a requirement for the Number of Steps along First Edge.

| Generate Surface                     | × |
|--------------------------------------|---|
| Number of Steps along First Edge 141 |   |
| OK Cancel                            |   |

Figure 58 - Surface precision option

This can be thought of as how good the surface will be created.

The higher the value in the dialogue, the more accurate the surface will be created, this could have an impact of complex parts when they are machined and the final finish of the created part.

For this example, we will accept the default values.

<LClick>[OK] to continue



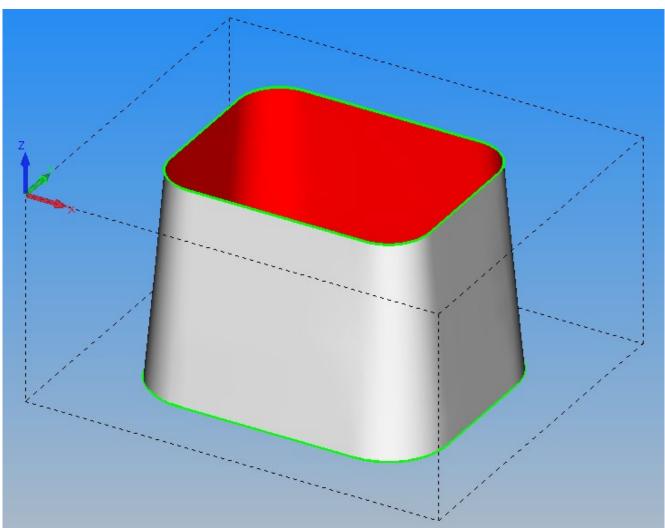



Figure 59 - Complete taper surface



## The Flat Bottom

To create the bottom ruled surface, we need two more pieces of geometry adding to the current drawing.

Using **GEOMETRY > 3D Polyline**, draw two polylines The first from X0, Y0, Z-70 to X0, Y120, Z-70 then <**RClick>** to finish. The second from X140, Y0, Z-70 to X140, Y120, Z-70.



Figure 60 - Polylines added

Select GEOMETRY > 3D Surfaces / , I

, make the option to **O Ruled Surface (2 Curves)**.

| 3D Surfaces                 |                            | × |  |  |
|-----------------------------|----------------------------|---|--|--|
| Туре                        |                            |   |  |  |
| O Swept Surface (2 Curves)  | O Swept Surface (3 Curves) |   |  |  |
| O Coons Patch (4 Curves)    | O Coons Patch (3 Curves)   |   |  |  |
| Ruled Surface (2 Curves)    | ◯ Surface of Revolution    |   |  |  |
| ◯ Fillet Between 2 Surfaces | O Tri-Comer Fillet         |   |  |  |
| O Surface from Sections     | O Extruded Surface         |   |  |  |
| ◯ Flat Surface              |                            |   |  |  |
| Edge Tolerance 0.02         |                            |   |  |  |
| OK Cancel                   |                            |   |  |  |

Figure 61 - Surface Creation dialogue

<LClick> [OK] to continue.



<LClick> both of the polylines as the Start and Finish requirements, then <LClick> [OK] for the precision for this example.

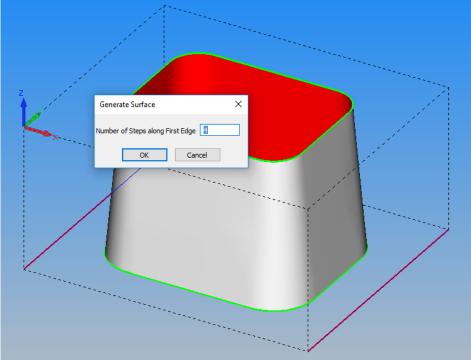



Figure 62 - Surface accuracy option

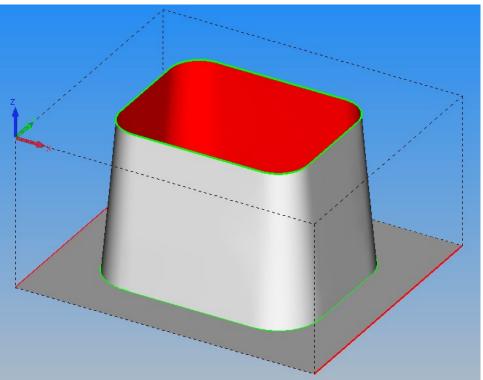



Figure 63 - Completed Ruled Surface



## The Curved top

To create the curved top surface, we need to create a Work Plane on the front of the Work Volume to allow creation of the arc geometry used to generate the finished surface.

Use VIEW > Iso if you are not in this view already.

Use **WORK PLANES** >\_Slice through Work Volume and <LClick> the Work Volume line running along the global X axis.

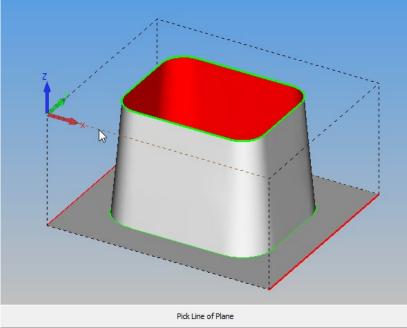



Figure 64 - Line for Work Plane slice

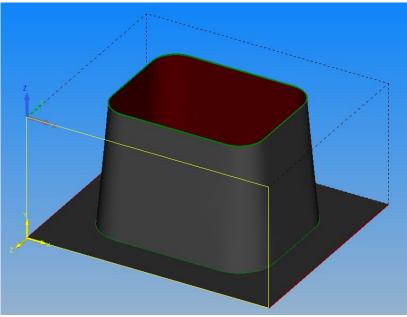



Figure 65 - Generated Front Work Plane



#### Creating the reference points for the curve

| Select VIEW > Work Plane |              | to visualise only the section being drawn.          |
|--------------------------|--------------|-----------------------------------------------------|
| Using GEOMETRY > Line    | <b>1</b> , d | create a line from X20, Y0, <lclick> [OK].</lclick> |

|           |      |        |   |      |    | 150 |
|-----------|------|--------|---|------|----|-----|
| LINE From | X 20 | F1=? Y | 0 | F1=? | ОК |     |

Figure 66 - Line Start Point

to X [F1 =?], Y50, <LClick> [OK].

|         |           | 25   |      |      |    |
|---------|-----------|------|------|------|----|
| LINE To | X UNKNOWN | F1=? | Y 50 | F1=? | ок |

Figure 67 - Line Unknown End Point

When prompted enter an angle value of 85, <LClick> [OK].

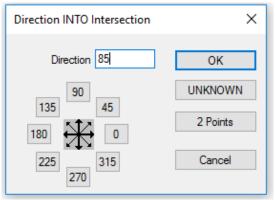



Figure 68 - Direction options

| Figure 69 - Created I | Line |  |
|-----------------------|------|--|



To create the second line, we need to mirror the first one, but we have no reference points to use in the current view.

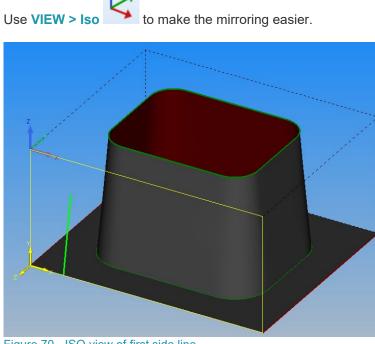
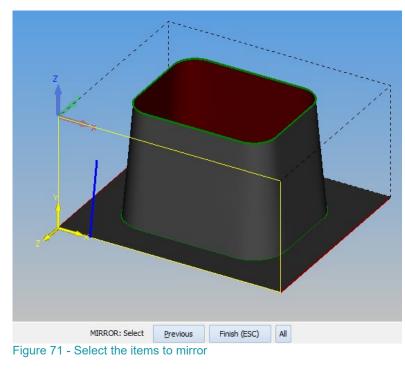




Figure 70 - ISO view of first side line



<LClick> the previously drawn line as the item to mirror.



<RClick> or [Finish (ESC)] to continue.



For the First Point of Mirror, use MID-Point of <F7> and <LClick> the lower line shown below.

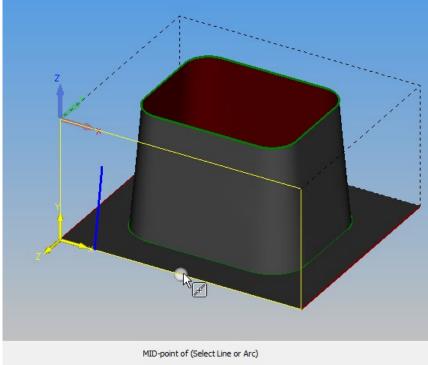



Figure 72 - First point of Mirror

For the Second Point of Mirror, use MID-Point of <F7> and <LClick> the upper line shown below.

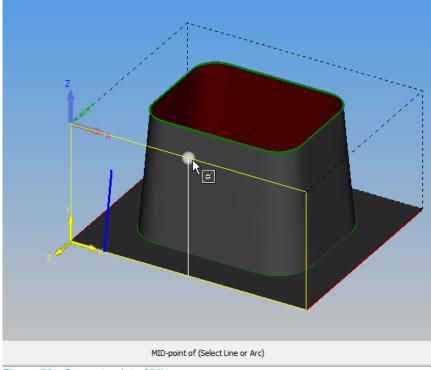



Figure 73 - Second point of Mirror



When prompted, answer **[Yes]** to keep the original. Then **<RClick>** to finish.

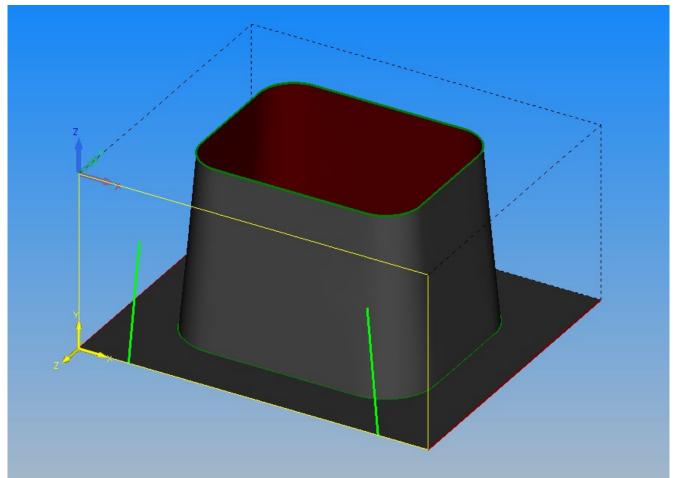



Figure 74 - Completed Mirror



Create the Curve



Using GEOMETRY > Arc > 2 Points and Radius ¥ For the First point, use END-Point of <F6> and <LClick> the top of the right hand line.

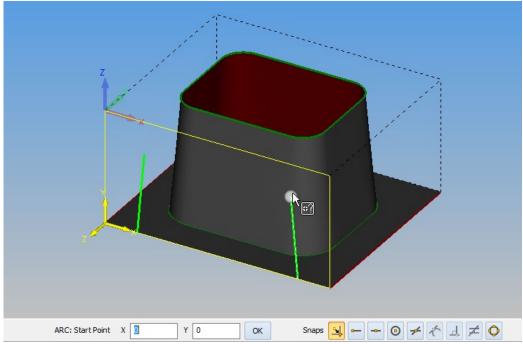
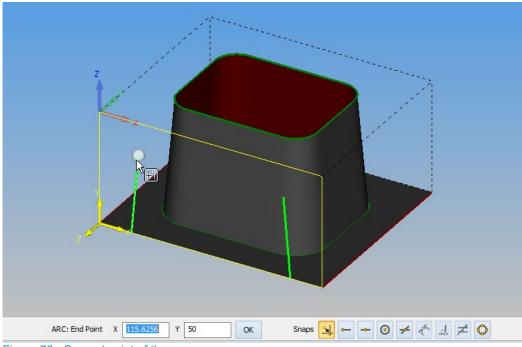
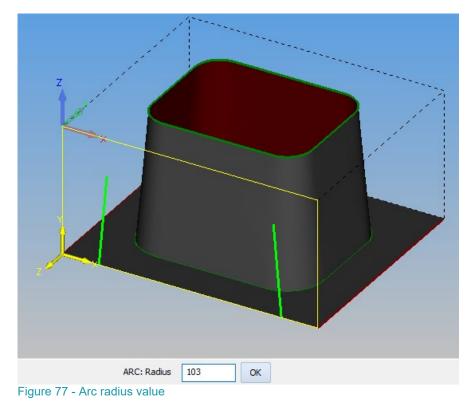
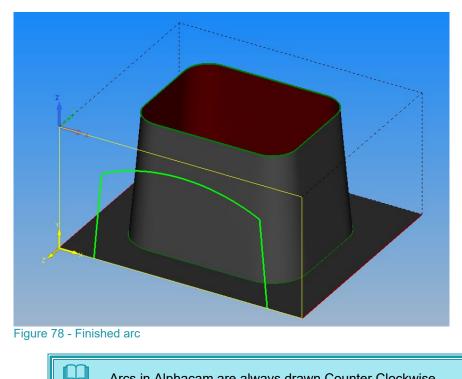



Figure 75 - First point of the arc

For the Second point, use END-Point of <F6> and <LClick> the top of the left hand line.



Figure 76 - Second point of the arc



For the Arc Radius, enter the value 103.



<LClick> [OK] to complete, <RClick> to finish the command.



Arcs in Alphacam are always drawn Counter Clockwise.



To allow the surface creation process to work correctly, the arc needs to be longer than we have drawn.

Using the EDIT > Extend by Distance command, extend the arc each side by a value of 10.

| Extend by Distance |             |  |  |
|--------------------|-------------|--|--|
| Distance (-ve to   | Shorten) 10 |  |  |
| Use Percentage     |             |  |  |
| ОК                 | Cancel      |  |  |

Figure 79 - Extend by Distance dialogue

<LClick> [OK] to continue, then when prompted <LClick> each end of the arc to extend it.

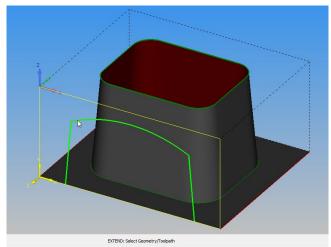
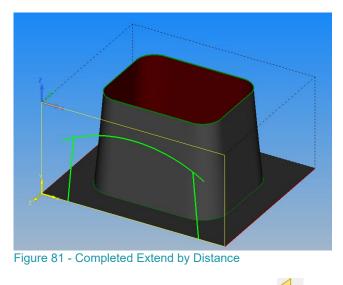
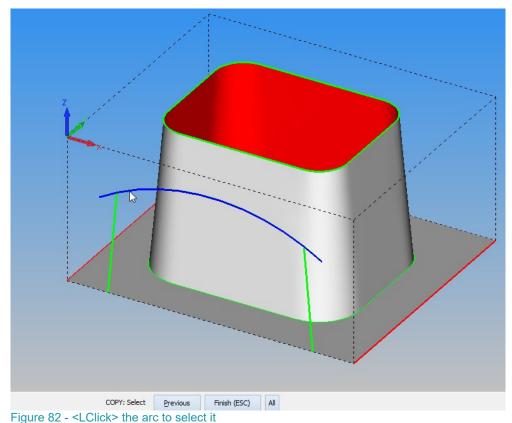




Figure 80 - Extend Prompt








Create the Far side reference geometry

Use EDIT > Auto/2D/3D > 3D to set the drawing mode to 3D.

Use EDIT > Copy

For the geometry to be copied, <LClick> the Arc to select it.



<RClick> or [Finish (ESC)] to continue. For the base point use X0, Y0, Z0. <LClick> [OK] to continue.

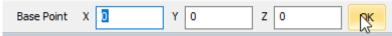



Figure 83 - Copy Base Point

For the New Position, use X0, Y120, Z0 <LClick> [OK] to continue.

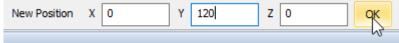



Figure 84 - Copy New Point

<RClick> or [Finish (ESC)] to apply the copy.

<**RClick>** to finish the command completely.



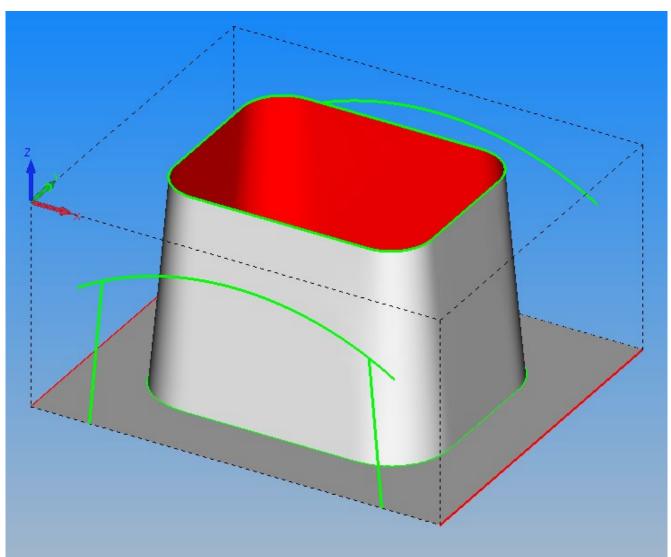



Figure 85 - Completed Copy command



#### Arc surface creation

Select GEOMETRY > 3D Surfaces , make the option to **O** Ruled Surface (2 Curves).

| 3D Surfaces                 |                            | × |  |
|-----------------------------|----------------------------|---|--|
| Туре                        |                            |   |  |
| O Swept Surface (2 Curves)  | O Swept Surface (3 Curves) |   |  |
| O Coons Patch (4 Curves)    | O Coons Patch (3 Curves)   |   |  |
| Ruled Surface (2 Curves)    | O Surface of Revolution    |   |  |
| ◯ Fillet Between 2 Surfaces | ◯ Tri-Comer Fillet         |   |  |
| O Surface from Sections     | O Extruded Surface         |   |  |
| ◯ Flat Surface              |                            |   |  |
| Edge Tolerance 0.02         |                            |   |  |
| OK Cancel                   |                            |   |  |

Figure 86 - Surface Creation dialogue

<LClick> [OK] to continue. For the Start Section, <LClick> the front arc

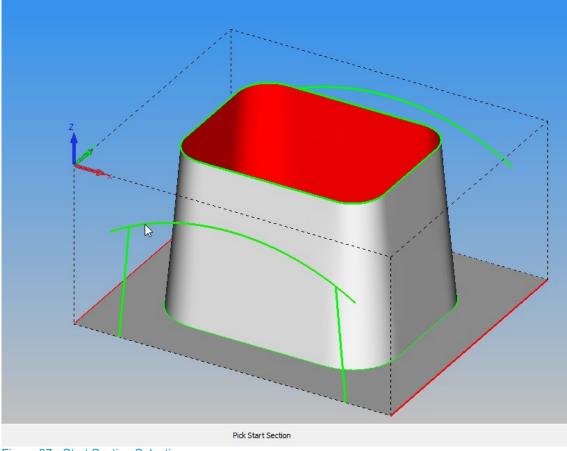



Figure 87 - Start Section Selection



For the Finish Section, **<LClick>** the rear arc.

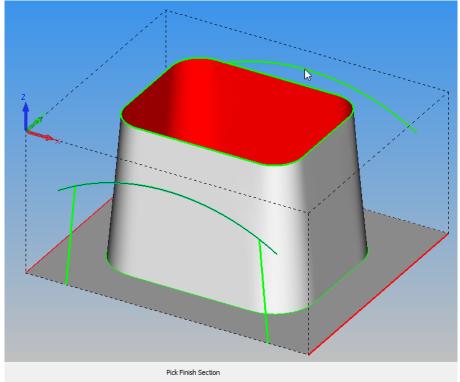
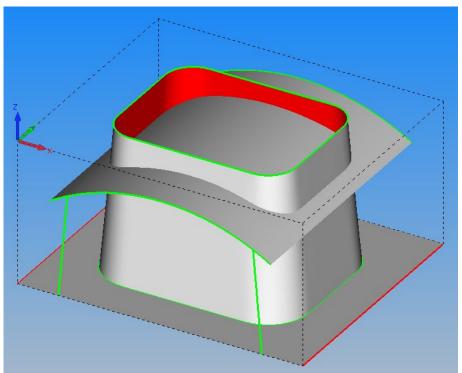



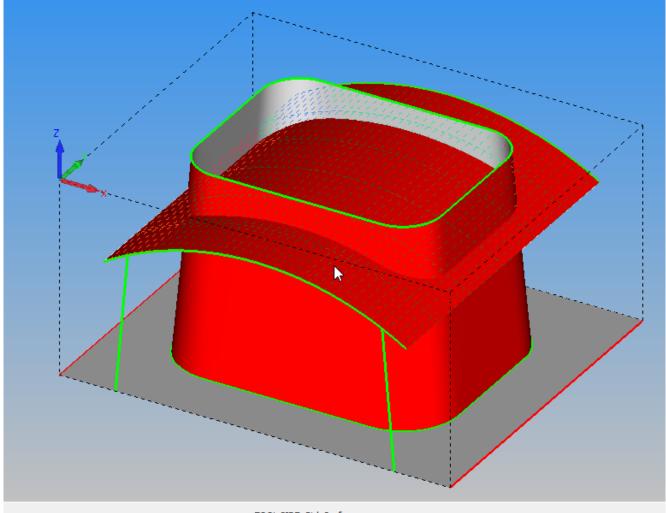

Figure 88 - Finish Section selection



<LClick> [OK] for the default precision options when prompted to complete the surface.

Figure 89 - Completed curved surface




## Adding the top surface Fillet

One important consideration prior to the next section of surface creation is the way in which the **Fillet Between 2 Surfaces** command works.

You can only apply a surface fillet to a silver face of a surface.

On our current example, if we applied a fillet to the tapered surface and the arc surface, the finished part would be incorrect, so we must manipulate both of these two surfaces prior to the filleting option.

Use **3D > Reverse Tool Side**, then **<LClick>** both the tapered and arc surfaces when prompted.



TOOL SIDE: Pick Surface

Figure 90 - Reversed surfaces

<RClick> to finish.



### Select GEOMETRY > 3D Surfaces // , m

, make the option to **O** Fillet Between 2 Surfaces.

| 3D Surfaces                | ×                          |  |
|----------------------------|----------------------------|--|
| Туре                       |                            |  |
| O Swept Surface (2 Curves) | O Swept Surface (3 Curves) |  |
| O Coons Patch (4 Curves)   | O Coons Patch (3 Curves)   |  |
| O Ruled Surface (2 Curves) | O Surface of Revolution    |  |
| Fillet Between 2 Surfaces  | ◯ Tri-Comer Fillet         |  |
| O Surface from Sections    | O Extruded Surface         |  |
| ◯ Flat Surface             |                            |  |
| Edge Tolerance 0.1         |                            |  |
| OK Cancel                  |                            |  |

Figure 91 - Surface Creation dialogue

#### <LClick> [OK] to continue.

You are prompted to select a location on the first surface where the fillet will come from. **<LClick>** on the arc surface as shown below.

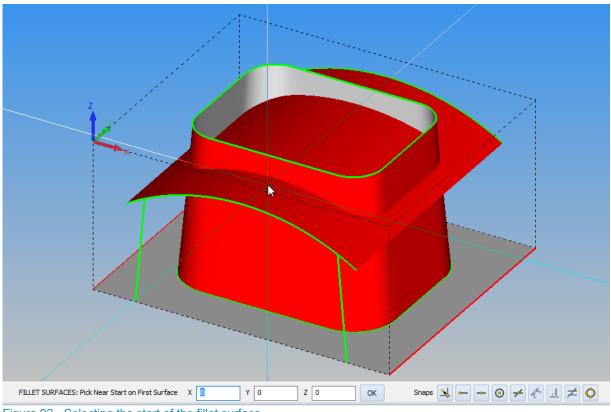



Figure 92 - Selecting the start of the fillet surface



You will then be asked for a second surface to create the fillet to, <LClick> on the tapered surface as indicated below.

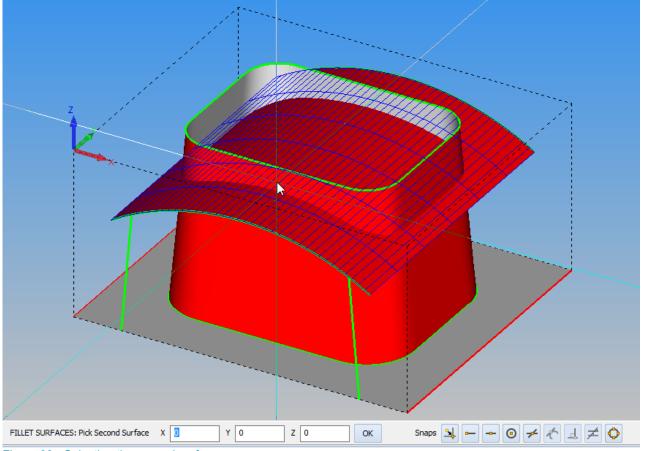



Figure 93 - Selecting the second surface.

Once you have selected the second surface, the **Fillet** size option dialogue is displayed. Both the Start and End radius values are 8, this is a complete fillet around a full surface, if you were working on a single edge it is possible to apply a tapering fillet by entering different values for the Start and End radius.

The **Step Length** allows you to change the precision at which the fillet is created, for this example we will accept the default options.

| Fillet Surfaces                               | ×      |
|-----------------------------------------------|--------|
| Start Fillet Radius                           | 8      |
| End Fillet Radius<br>Step Length along Fillet |        |
| ОК                                            | Cancel |

Figure 94 - Surface Fillet dialogue options

<LClick> [OK] to apply the fillet.



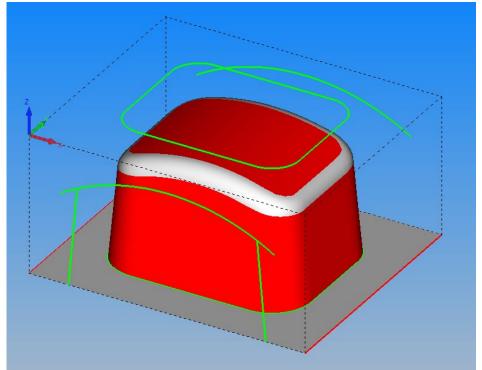



Figure 95 - Complete applied fillet surface

Use 3D > Reverse Tool Side, then <LClick> both the tapered and arc top surfaces when prompted. <RClick> to finish.

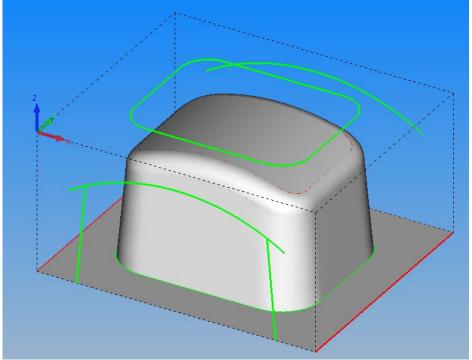



Figure 96 - Surfaces reversed to the correct aspect



## The Bottom Fillet

Select GEOMETRY > 3D Surfaces , make the option to • Fillet Between 2 Surfaces.

| 3D Surfaces                | ×                          |  |
|----------------------------|----------------------------|--|
| Туре                       |                            |  |
| O Swept Surface (2 Curves) | O Swept Surface (3 Curves) |  |
| O Coons Patch (4 Curves)   | O Coons Patch (3 Curves)   |  |
| O Ruled Surface (2 Curves) | O Surface of Revolution    |  |
| Fillet Between 2 Surfaces  | ◯ Tri-Comer Fillet         |  |
| O Surface from Sections    | O Extruded Surface         |  |
| ◯ Flat Surface             |                            |  |
| Edge Tolerance 0.1         |                            |  |
| OK Cancel                  |                            |  |

Figure 97 - Surface Creation dialogue

<LClick> [OK] to continue.

You are prompted to select a location on the first surface where the fillet will come from. **<LClick>** on the flat surface as shown below.

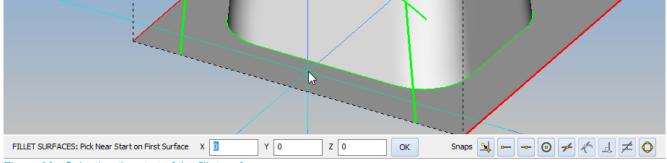
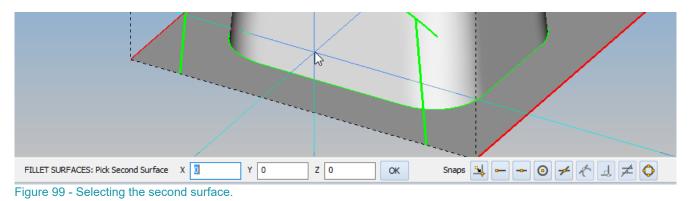




Figure 98 - Selecting the start of the fillet surface



You will then be asked for a second surface to create the fillet to, <LClick> on the tapered surface as indicated below.



Once you have selected the second surface, the Fillet size option dialogue is displayed. Both the Start and End radius values are 8.

The Step Length allows you to change the precision at which the fillet is created, for this example we will accept the default options.

| Fillet Surfaces X              |
|--------------------------------|
| Start Fillet Radius 8          |
| End Fillet Radius 8            |
| Step Length along Fillet 5.109 |
| OK Cancel                      |

Figure 100 - Surface Fillet dialogue options

<LClick> [OK] to apply the fillet.

#### Select **GEOMETRY** > 3D Surfaces $\checkmark$ and pick the Fillet between 2 Surfaces option.

For the surfaces select a parameter line in the bottom surface and a parameter line in the tapered surface Set the fillet size to 8 for BOTH starting and ending radius.



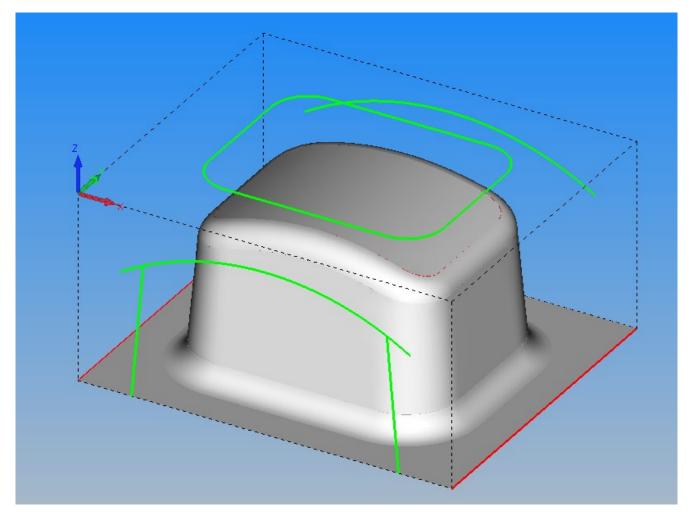



Figure 101 - Completed surface model Example 1 with applied fillets

Save your work with a suitable name.



# **Example 2 Tutorial**

# Geometry creation

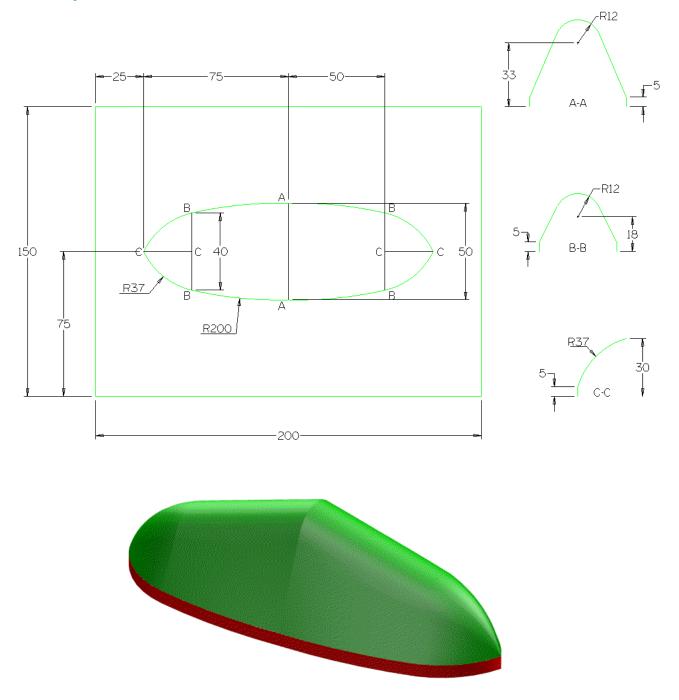



Figure 102 - Worked example reference drawing and completed example



Draw the 2D geometry as shown below.

Only one side with the cross sections needs to be created as we will use the Mirror function to replicate the created surfaces for the opposite end.

The plan section lines AA BB CC are to be drawn on the construction layer.

The sectional views are created WITHOUT the 5mm flat, as it is NOT possible to create a surface containing a sharp edge.

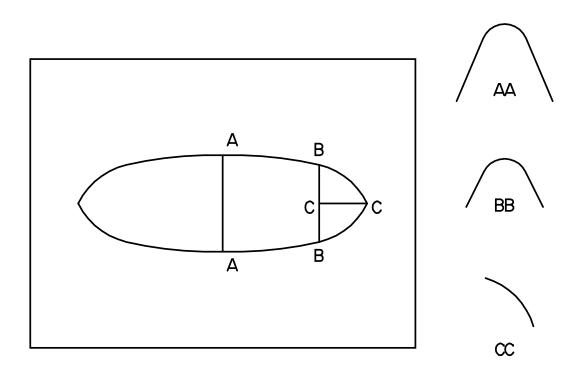



Figure 103 - Surface creation example 2 cross section information



# Create a Work Volume for visualisation only

Using **GEOMETRY > Rectangle** and create a rectangle from X0, Y0 to X200, Y150



Figure 104 - Base Work Volume rectangle

Using 3D > Set Work Volume <LClick> the rectangle and set the work volume top to 50 and bottom to

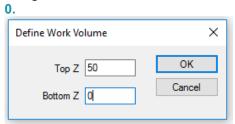



Figure 105 - Work Volume dialogue options

Select VIEW > Views > Iso

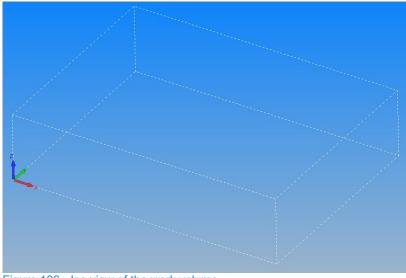



Figure 106 - Iso view of the work volume



# Create the base geometry shapes

# Construction Guide lines

To make creation of the required arcs for the base geometry it is easier to create a number of Construction guide lines to assist in location choices for the arcs start and end points and the generation of the required Work Planes.

Use **GEOMETRY > Construction** to turn on this drawing mode.

Use **GEOMETRY** > Line and create two central guides across the bottom of the Work Volume, having AutoSnap turned on, <**F2**> will make the process easier.

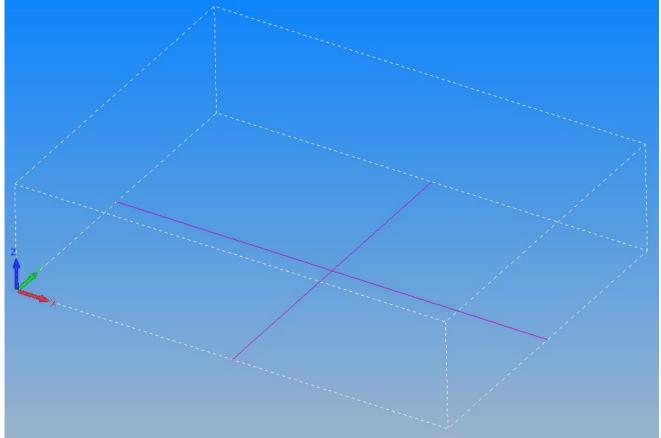



Figure 107 - Mid point guide lines



Using EDIT > Offset Apply the following values to create an offset guide for the left side arc end.

| Offset                                         | × |
|------------------------------------------------|---|
| Amount                                         |   |
| Distance 50                                    |   |
| Offset to Point                                |   |
| Offset on both sides                           |   |
| What                                           |   |
| Line / Arc     Geometry                        |   |
| ○ Surface                                      |   |
| Offset as Geometry                             |   |
| Delete Original                                |   |
| Keep Toolpath Associations                     |   |
| OK Cancel                                      |   |
| Figure 108 - Offset options for the guide line |   |

<LClick> [OK] the <LClick> the middle line going across the Y direction of the part, <LClick> to the left side to place the new geometry.

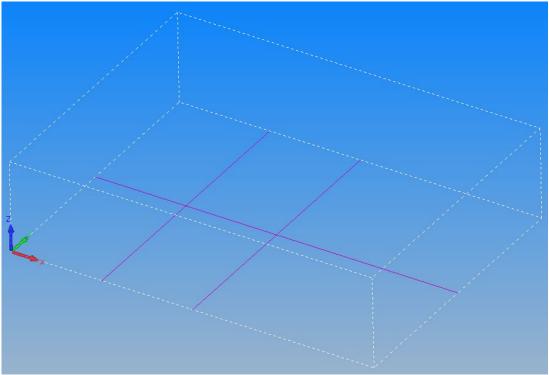



Figure 109 -First arc guide lines



Using EDIT > Offset again, once with an offset value of 25 selecting the construction line running along the part in the X direction and placing the new geometry above the line, then use the Offset command once more with a value of 20. Select the same line and place the new geometry also above the original central line. See below for the finished placements.

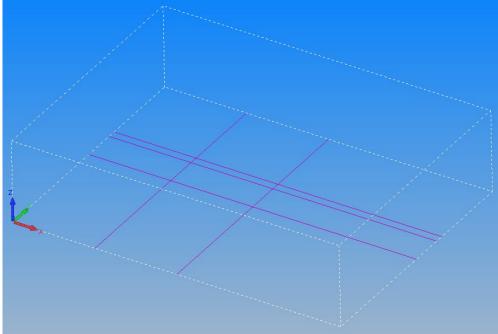



Figure 110 - Above centre guide lines

Using EDIT > Offset  $\uparrow$  one final time with an offset value of 75 selecting the construction line running across the part in the Y direction and placing the new geometry to the left of the line as a guide for the left end of the part.

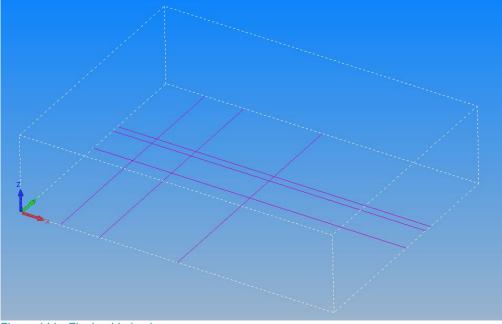



Figure 111 - Final guide in place



**Arc Creation** 

Select VIEW > Views > XY All arcs are created in a Counter Clockwise direction which is why we have drawn the guides to the left side of centre to make the next section easier.

# Select GEOMETRY > Arc > 2 Points and Radius

For the Start Point, use Intersection of (F9) <sup>1</sup> then select the vertical centre line and the furthest vertical offset line to identify this point.

-k<sub>+1</sub>

Figure 112 - Arc Start location

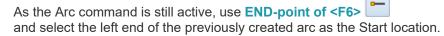
+ then select the first left vertical offset line and the lower For the Finish Point, use Intersection of <F9> vertical offset line to identify this point.

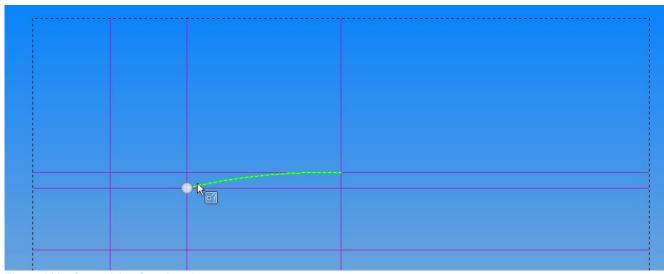


Figure 113 - Arc End location



### When prompted, the Arc Radius is 200


|             | 10  | 00 |
|-------------|-----|----|
| ARC: Radius | 200 | ок |


Figure 114 - Arc Radius value

### <LClick> [OK] to apply.

|                                                                                                                 | <br> |  |
|-----------------------------------------------------------------------------------------------------------------|------|--|
|                                                                                                                 |      |  |
| 1                                                                                                               |      |  |
|                                                                                                                 |      |  |
| i.                                                                                                              |      |  |
| 1                                                                                                               |      |  |
| i de la companya de l |      |  |
| 1                                                                                                               |      |  |
|                                                                                                                 |      |  |
| 1                                                                                                               |      |  |
|                                                                                                                 |      |  |
| 1                                                                                                               |      |  |
| 1                                                                                                               |      |  |
| 1                                                                                                               |      |  |
| i.                                                                                                              |      |  |
| 1                                                                                                               |      |  |
| 1                                                                                                               |      |  |
| 1                                                                                                               |      |  |
|                                                                                                                 |      |  |
|                                                                                                                 |      |  |
| 1                                                                                                               |      |  |
|                                                                                                                 |      |  |
|                                                                                                                 |      |  |
| 1                                                                                                               |      |  |
| 1                                                                                                               |      |  |
| 1                                                                                                               |      |  |
| 1                                                                                                               |      |  |
| i.                                                                                                              |      |  |
| 1                                                                                                               |      |  |
|                                                                                                                 |      |  |
| 1                                                                                                               |      |  |
|                                                                                                                 |      |  |
| i                                                                                                               |      |  |
| 1                                                                                                               |      |  |
|                                                                                                                 |      |  |











For the Finish Point, use Intersection of <F9> then select the far left vertical offset line and the horizontal centre line to identify this point.

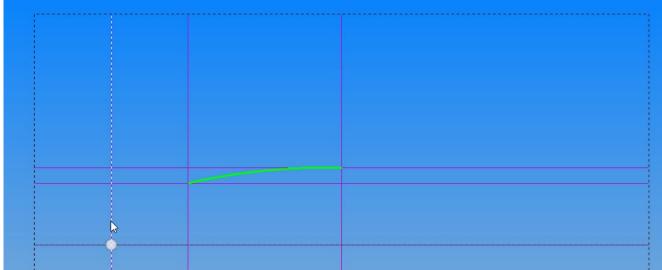



Figure 117 - Second arc Finish location

When prompted, the Arc Radius is 37

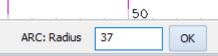
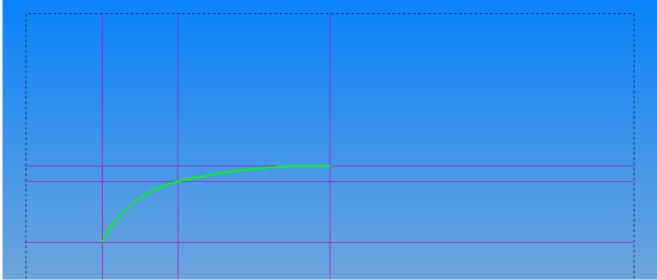




Figure 118 – Second Arc Radius value

<LClick> [OK] to apply.





<RClick> to finish the command.



Using EDIT > Mirror Click> the two arcs as the items to mirror, then for the first and second points for mirror <LClick> each end of the central vertical line.
LClick> [Yes] to keep the originals.

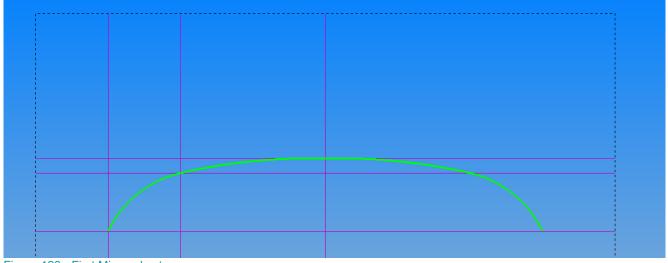
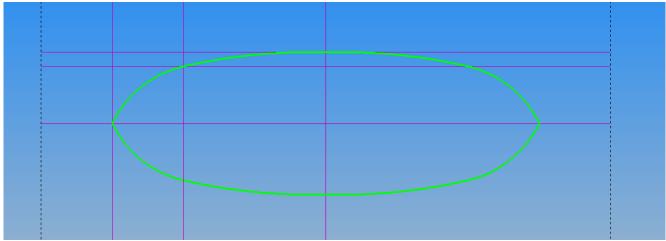




Figure 120 - First Mirrored set.

With the Mirror command still active, **<LClick>** all four arcs and use the ends of the horizontal centre line as the two points for mirror.





<RClick> to complete the command.



# **Cross Sections and Work Planes**

Although the geometry may appear to be on the bottom of the work volume it is only 2D geometry and as such has no concept of Z values. To create the surfaces, it will be necessary to manipulate the geometries into position.

We will also need to create three work planes for the cross sections and their associated geometries.

# Manipulation of the base geometry to its required location

As we will be forming a vertical side set of surfaces to create the lower section, we will need to have upper and lower geometry to create the surfaces from.

We have already created the lower geometry set, now we will need to copy this geometry up by 5mm to create the upper geometry set.

Select VIEW > Views > Iso

Select EDIT > Auto 2D 3D > 3D this causes any manipulation to be a 3D manipulation.

Select EDIT > Copy in then select the four arcs that we have previously drawn.

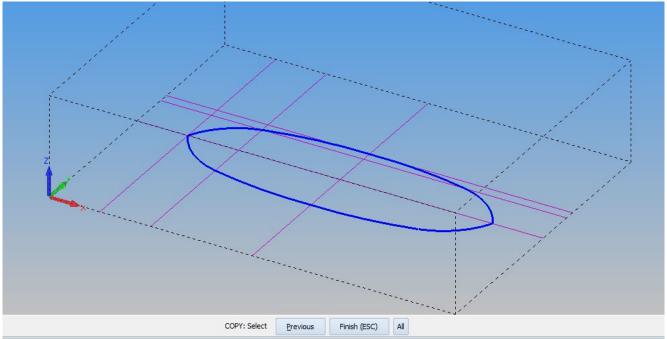
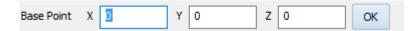




Figure 122 - Items for the 3D Copy

<RClick> or [Finish (ESC)] to continue.



For the Base Point use X0, Y0, Z0, <LClick> [OK]



then for the new position use X0, Y0, Z5. <LClick>[OK]



<RClick> twice to complete the process.

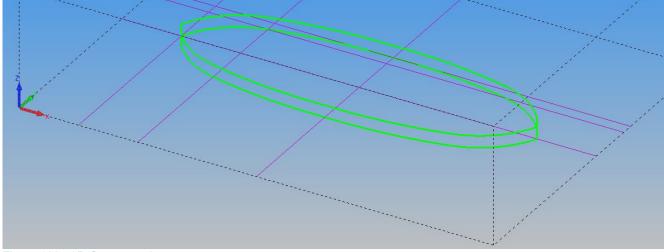



Figure 123 - 3D Copy complete

Select EDIT > Auto 2D 3D > Auto 2D is to set the manipulation method back to default.



### Work Plane cross section A-A

Using **WORK PLANES > Slice through work volume** new Work Plane for the central cross section A-A. <LClick> on the vertical centre line to create a

Use **WORK PLANES > Set Work Plane Origin** to move the original left hand side origin position to the required central location as shown below. You will need to use **MID-point of <F7>** to pick the required location on the construction line, as it is on a different work plane Auto Snap will not work.

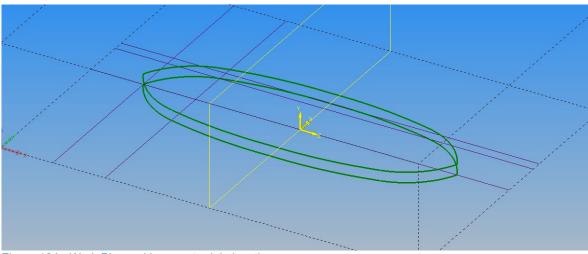



Figure 124 - Work Plane with correct origin location

On the Work Planes tab of the Project Manager, <RClick> on the new work plane and select Properties.

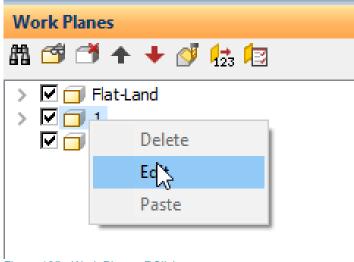



Figure 125 - Work Plane <RClick> menu



#### Rename the work plane to A-A.

| Edit 3D Work Plane                                        | ×                                                                                                          |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Global Origin       X       Q       Y     Q       Z     5 | - And A                                                                                                    |
| Angles<br>Rotation Angle -90<br>Tilt Angle 0              | Work Plane Properties<br>Work Plane Name<br>Section A-A<br>Offset Number 0<br>Show for each NEW Work Plane |
| Help                                                      | OK Cancel                                                                                                  |

Figure 126 - Work Plane Edit dialogue

A second method to rename is to use the Properties options at the top of the Work Planes Project Manager page.

| Work Planes                                            | 4× |
|--------------------------------------------------------|----|
| 🛍 🗇 ブ 🛧 🔸 💕 🔛 探                                        |    |
| Flat-Land     Work Plane Properties                    |    |
| > 🗹 🗇 Section A-A                                      |    |
| 🗹 🗇 2                                                  |    |
|                                                        |    |
| Figure 127 - Work Planes Properties on Project Manager |    |

| Work Plane Properties  |               | × |
|------------------------|---------------|---|
| Work Plane Name        | Offset Number |   |
| 3D Copy                | 0             |   |
| 3D Copy<br>Section A-A | 0             |   |
|                        |               |   |
|                        |               |   |
|                        |               |   |

Figure 128 - Work Plane Names in Properties

Using the Properties option allows for renaming many work planes at once.

Renaming Work Planes allows for ease of identification on complex parts.



Use VIEW > Work Plane to look directly at the active work plane. Then using any suitable methods create the following geometry set.

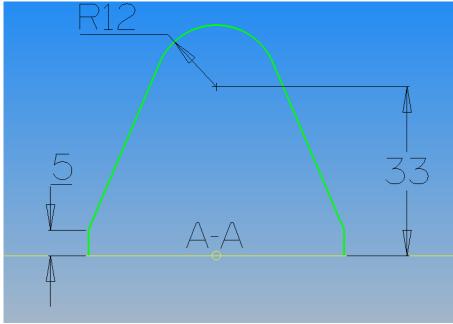



Figure 129 - Geometry set for cross section A-A

Select VIEW > Views > Iso



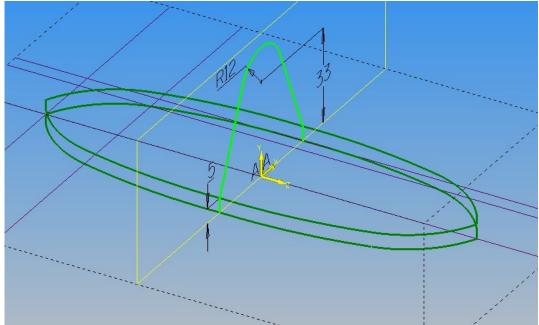



Figure 130 - Created cross section A-A



#### Work Plane cross section B-B

Using WORK PLANES > Slice through work volume <LClick> on the first left hand offset from the centre line to create a new Work Plane for the central cross section B-B.

Use WORK PLANES > Set Work Plane Origin

to move the original left hand side origin position to the required central location as shown below. You will need to use MID-point of <F7> to pick the required location on the construction line, as it is on a different work plane Auto Snap will not work.

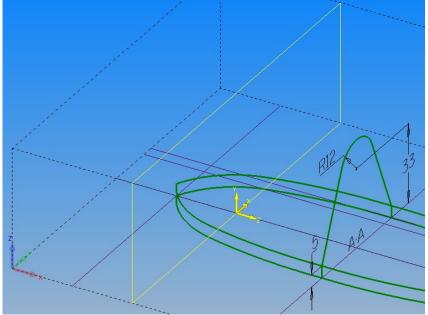



Figure 131 - Work Plane with correct origin location

On the Work Planes tab of the Project Manager use the Properties command to rename the work plane.

| Work Planes                           | ų× |
|---------------------------------------|----|
| 🛱 🗇 🗂 🛧 🔸 🝼 🟡 🙀 🚬 👘                   |    |
| > 🔽 🗇 Flat-Land Work Plane Properties |    |
| > 🔽 🗐 3D Copy                         |    |
| > 🔽 🗔 Section A-A                     |    |
| 🔽 🗍 3                                 |    |

Figure 132 - Work Plane Properties command

#### Rename the work plane to B-B.

| Work Plane Name | Offset Number |  |
|-----------------|---------------|--|
| 3D Сору         | 0             |  |
| Section A-A     | 0             |  |
| Section B-B     | 0             |  |

Figure 133 - Work Plane Properties dialogue

Renaming Work Planes allows for ease of identification on complex parts.



Use VIEW > Work Plane to look directly at the active work plane. Then using any suitable methods create the following geometry set.

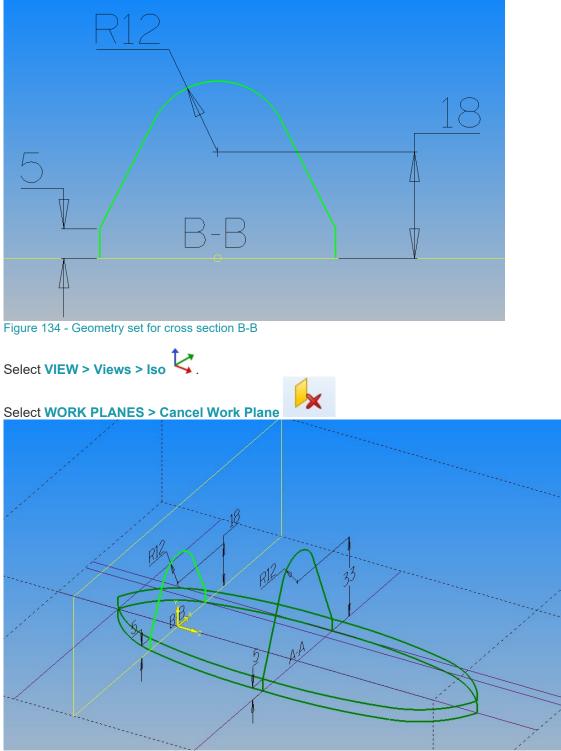



Figure 135 - Created cross section B-B



### Work Plane cross section C-C

Using **WORK PLANES > Slice through work volume** new Work Plane for the central cross section **C-C**. <LClick> on the horizontal centre line to create a

Use **WORK PLANES > Set Work Plane Origin** to move the original left hand side origin position to the required central location as shown below. You will need to use **END-point of <F6>** to pick the required location on the arc, as it is on a different work plane Auto Snap will not work.

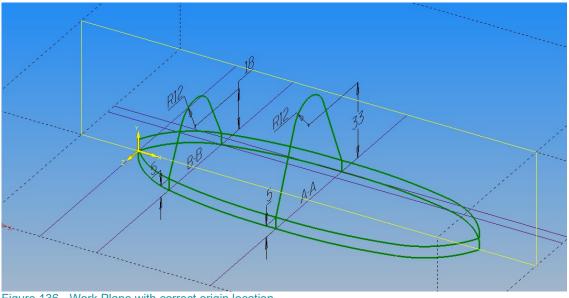



Figure 136 - Work Plane with correct origin location

On the Work Planes tab of the Project Manager use the Properties command to rename the work plane.

| Work Planes                                | μ× |
|--------------------------------------------|----|
| 🏥 🥶 🗂 🛧 🔸 💕 🏡                              |    |
| > 🗹 🗇 Flat-Land Work Plane Properties      |    |
| > 🔽 🗇 3D Copy                              |    |
| > 🗹 🗇 Section A-A                          |    |
| > 🗹 🗇 Section B-B                          |    |
| V 🗍 4                                      |    |
| Figure 137 - Work Plane Properties command |    |

| to C-C.       |                              |
|---------------|------------------------------|
|               | ×                            |
| Offset Number |                              |
| 0             |                              |
| 0             |                              |
| 0             |                              |
| 0             |                              |
|               |                              |
|               | Offset Number<br>0<br>0<br>0 |

Figure 138 - Work Plane Properties dialogue

Renaming Work Planes allows for ease of identification on complex parts.



Use VIEW > Work Plane to look directly at the active work plane. Then using any suitable methods create the following geometry set.

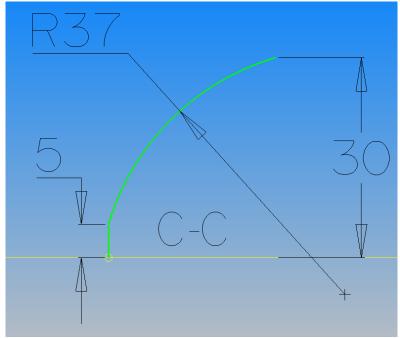



Figure 139 - Geometry set for cross section C-C

Select VIEW > Views > Iso



Select WORK PLANES > Cancel Work Plane

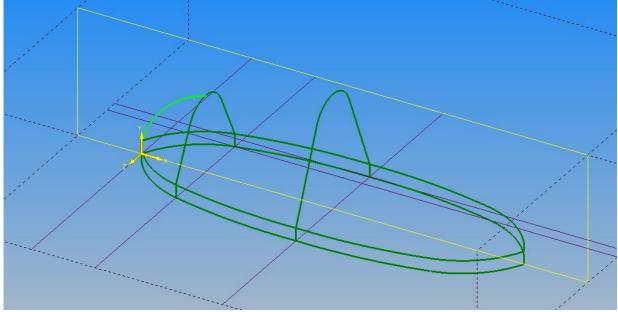



Figure 140 - Created cross section C-C



G O-1

# Preparing the profiles for Surface creation

The types of surfaces we will need to create to from the finished multi-curved form are called **Coons Patches**. These surfaces require specific geometry set ups to allow the surface to be created. All geometries which will form the boundaries must have their end points coincident with each other or the surface cannot be formed.

| All the following image | es have had the unrequi | red geometries hidden u     | sing CAD > Hide Parts |
|-------------------------|-------------------------|-----------------------------|-----------------------|
| Or the complete work    | plane has been unticke  | d in the case of the Flat-l | and work plane.       |

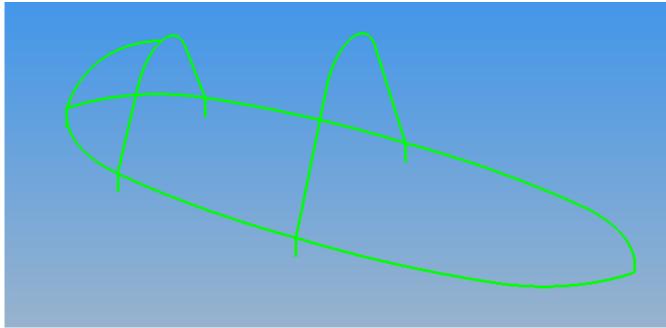



Figure 141 - Geometries for surface creation

Just to clarify, the small 5mm vertical lines are only shown to indicate which main profile is in use, it is not the one on Flat Land.



# Making complete A-A and B-B profiles

To create this first surface, depending on how you created the geometries, it may be necessary to join together the top arc sections and the tapered lines on each work plane to form a complete single geometry for each cross section.

The main lower 200mm arc will also need to be a single piece geometry and not joined to the smaller end 37mm arc.

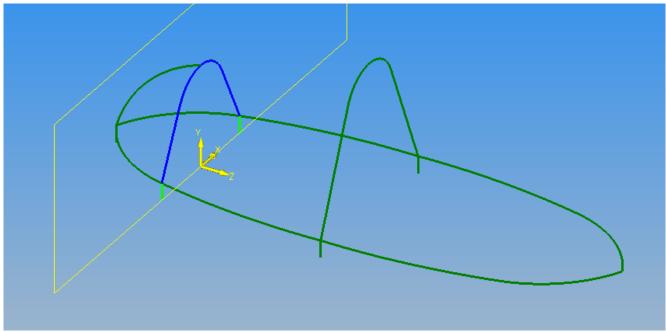



Figure 142 - Join together geometries as required

Using EDIT > Join make complete entities on both A-A and B-B work planes.

Note that you do not need to activate the required work plane to join the geometries, the action of <LClick> on a geometry during this process will automatically activate the plane on which the geometries are drawn.

To make things clearer, use WORK PLANES > Cancel Work Plane





Surface between section A-A and B-B

Select **GEOMETRY** > 3D Surfaces and the surface creation dialogue is displayed.

| 3D Surfaces                 | ×                          |  |
|-----------------------------|----------------------------|--|
| Туре                        |                            |  |
| O Swept Surface (2 Curves)  | O Swept Surface (3 Curves) |  |
| Coons Patch (4 Curves)      | O Coons Patch (3 Curves)   |  |
| O Ruled Surface (2 Curves)  | ◯ Surface of Revolution    |  |
| O Fillet Between 2 Surfaces | ⊖ Tri-Comer Fillet         |  |
| O Surface from Sections     | O Extruded Surface         |  |
| ◯ Flat Surface              |                            |  |
| Edge Tolerance 0.1          |                            |  |
| OK Cancel                   |                            |  |

Figure 143 - Surface creation options

#### Select Coons Patch (4 curves) then <LClick> [OK].

When prompted, select the sections A-A and B-B and the 200mm radius base profile curves connecting them. The prompt will ask for Edge1, Edge2, Edge3 and Edge 4, in this particular case the order is not important as the shape of the cross sections are uniform, however, the order of choice can have an impact on the finished surface.

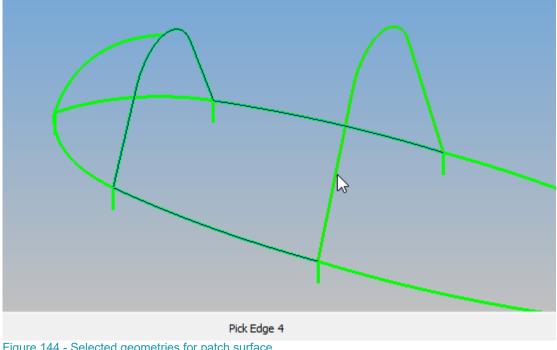



Figure 144 - Selected geometries for patch surface



Once you have chosen the four edges, the surface precision option is displayed.

The default options will always create a suitable surface, but if you need more accuracy for machining, then having more control lines is beneficial.

| Generate Surface                 | × |
|----------------------------------|---|
| Number of Steps along First Edge |   |
| OK Cancel                        |   |

Figure 145 - Surface quality options

<LClick> [OK] to complete the process.

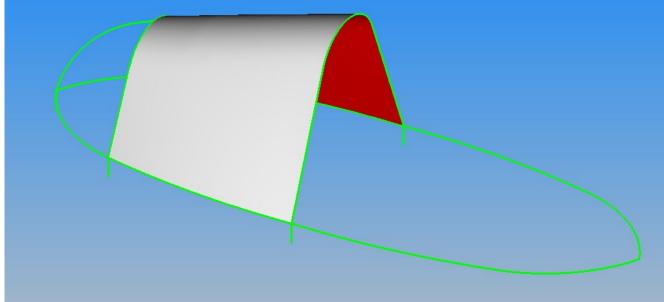
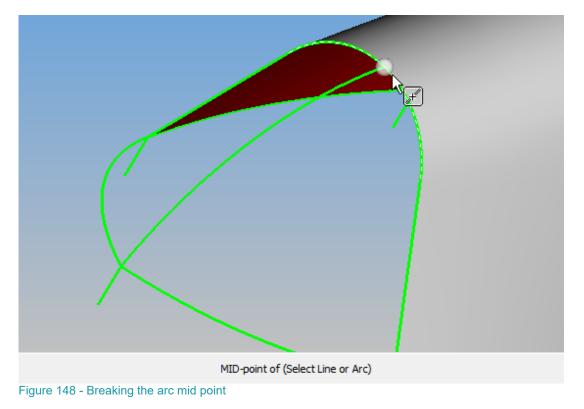



Figure 146 - Completed first surface



### Making suitable profiles for section C-C surfaces

To create the end surface sections, we will be using the **Coons Patch (3 Curves)**. To make the surfaces correctly we will need to manipulate the previous geometries to suit a three sided surface, this will involve breaking the **B-B** cross section geometry into two sections at the mid-point of the arc and also making sure that the base profile 37mm arcs are two separate entities.


| -    | <b>N</b>   |    |
|------|------------|----|
| roak | - <b>N</b> | an |

Using EDIT > Break and setting the options to O Geometry and O Individual.

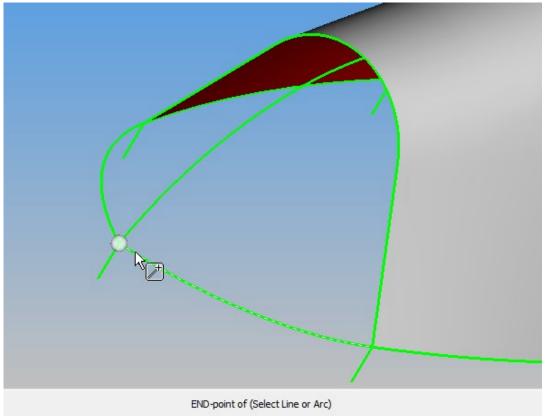

| Break                          |              | × |
|--------------------------------|--------------|---|
| Break                          |              |   |
| <ul> <li>Geometries</li> </ul> | ◯ Tool Paths |   |
| Method<br>Individual           |              |   |
| O Use Cutting Geom             | etries       |   |
| ОК                             | Cancel       |   |

Figure 147 - Break command options

Using MID-point of <F7> <LClick> the mid point of the arc on cross section B-B.







Then using END-point of (F6) <LClick> the end of the 37mm front arc. <RClick> to complete.

Figure 149 - Breaking the 37mm arc end point



### Surface between section C-C and the lower arcs

| 3D Surfaces                 |                          | × |
|-----------------------------|--------------------------|---|
| Туре                        |                          |   |
| O Swept Surface (2 Curves)  | Swept Surface (3 Curves) |   |
| O Coons Patch (4 Curves)    | Coons Patch (3 Curves)   |   |
| O Ruled Surface (2 Curves)  | Surface of Revolution    |   |
| O Fillet Between 2 Surfaces | O Tri-Corner Fillet      |   |
| O Surface from Sections     | O Extruded Surface       |   |
| ◯ Flat Surface              |                          |   |
| Edge Tolerand               | e 0.1                    |   |
| ОК                          | Cancel                   |   |

Figure 150 - Surface creation options

Select Coons Patch (3 curves) then <LClick> [OK]. When prompted, select cross section C-C, then one half of cross section B-B and finally the 37mm base radius.

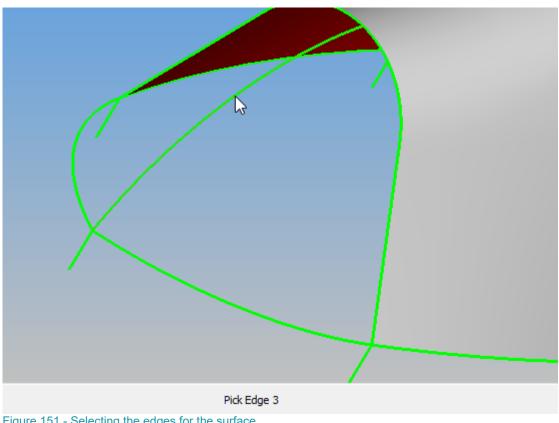



Figure 151 - Selecting the edges for the surface



Once you have chosen the three edges, the surface precision option is displayed.

The default options will always create a suitable surface, but is you need more accuracy for machining, then having more control lines is beneficial.

| Generate Surface X               |  |  |
|----------------------------------|--|--|
| Number of Steps along First Edge |  |  |
| OK Cancel                        |  |  |

Figure 152 - Surface quality options

<LClick> [OK] to complete the process.

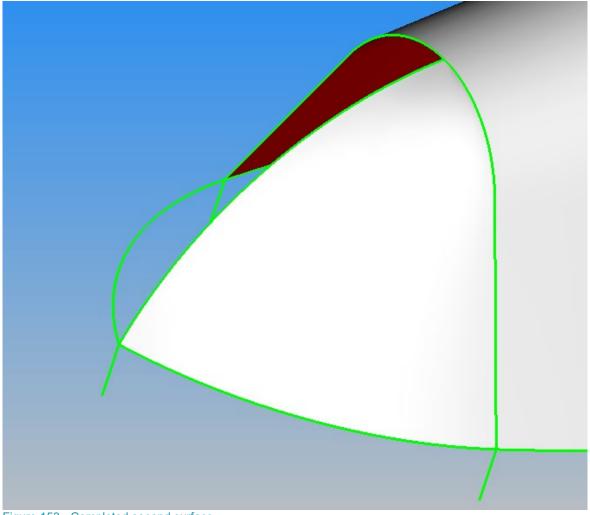



Figure 153 - Completed second surface



Repeat the process on the opposite side to create the complete end form.

Figure 154 - Complete end form

Note that in some instances the order in which the geometries are chosen can have an impact on the finish of the surface by causing "ripples".

If this does happen, Undo and select the elements in a differing order until you achieve the required finished form.



# Creating the opposite half using Mirror

To generate the opposite surface sections, we can use **EDIT > Mirror LClick>** all three surfaces to select them.

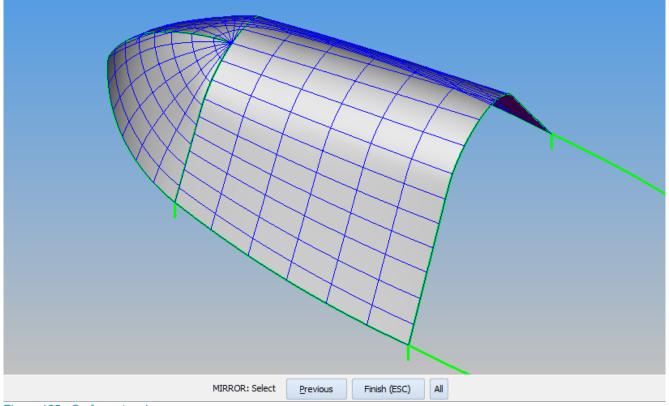



Figure 155 - Surfaces to mirror

### <RClick> or [Finish (ESC)] to continue.

You are now asked for the reference position for the mirror. Unlike a 2D mirror command where you select two points in the same work plane, with these surfaces being in 3D space we have to select a work plane as the mirror reference.

| Select Plane for Mirror   | × |
|---------------------------|---|
| Slice through Work Volume |   |
| 2 Lines for X and Y axes  |   |
| Existing Geometry         |   |
| By Name                   |   |
| Cancel                    |   |

Figure 156 - Mirror plane reference selector



The easiest method on this example is to use the [By Name] option.

| Work Planes |               | ×      |
|-------------|---------------|--------|
| Name        | Offset Number |        |
| A-A<br>B-B  | 0             | Select |
| C-C         | 0             | Edit   |
| Z+5 Plane   | 0             | Delete |
|             |               | Clear  |
|             |               | Cica   |
|             |               | Close  |

Figure 157 - Mirror reference By Name

Having unique names for our Work Planes makes the choice simple, <LClick> the A-A option, then <LClick> [Select].

| Work Planes                    |                  | ×                                          |
|--------------------------------|------------------|--------------------------------------------|
| Name                           | Offset Number    |                                            |
| A-A<br>B-B<br>C-C<br>Z+5 Plane | 0<br>0<br>0<br>0 | Select<br>Edit<br>Delete<br>Olear<br>Close |

Figure 158 - Using a specific work plane

Answer [Yes] to keep the original surfaces. <RClick> to complete.

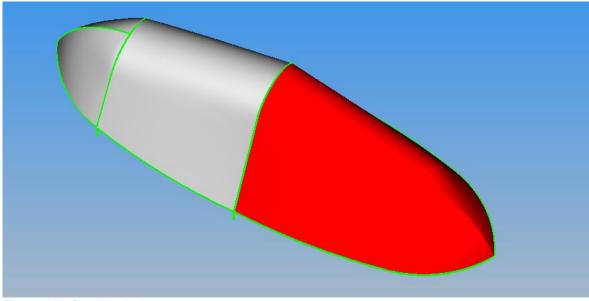



Figure 159 - Completed mirror

When surfaces are mirrored, they will be turned inside out and use of the

3D > Reverse Tool Side T option will be required to set the correct side to face out. There is nothing wrong in using this method if you prefer, but you may have more work on a complex part.



# Creating the opposite half using Rotate

Another method would be to use the EDIT > Rotate + Command. To rotate the surfaces in 3D it is necessary to draw an axis about which the rotation will take place. Using GEOMETRY > 3D Polyline , create the axis of rotation polyline from X100, Y75, Z0 to X100, Y75, Z70.

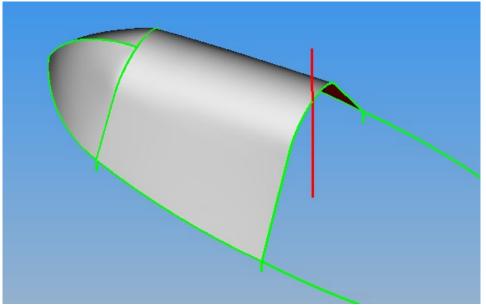



Figure 160 - Polyline axis for rotation

Select EDIT > Rotate + For the items to rotate, <LClick> the three surfaces.

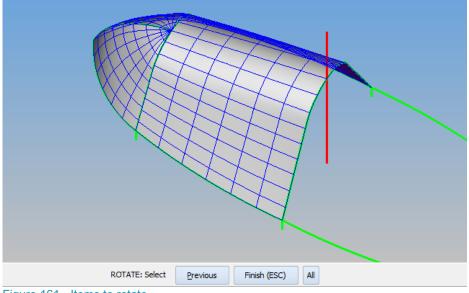



Figure 161 - Items to rotate

<RClick> or [Finish (ESC)] to continue.



For the Axis of Revolution, **<LClick>** the polyline.

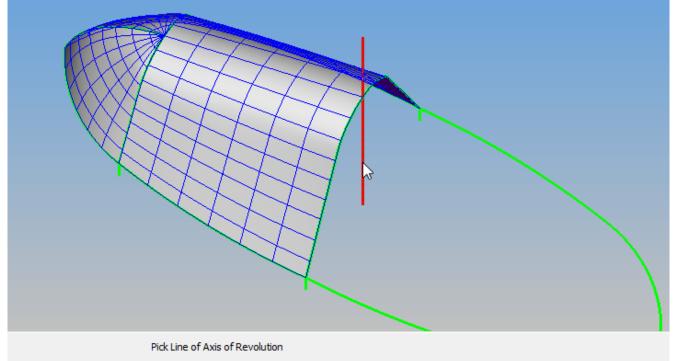



Figure 162 - Selecting the Axis of Revolution

For the angle option, enter 180.

| Rotation Angle (CW -ve)             | 180 | F1=? | ОК |
|-------------------------------------|-----|------|----|
| Figure 163 - Rotation angle options |     |      |    |

### <LClick> [OK].

For the number of copies, enter 2.

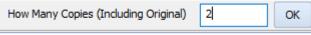



Figure 164 - How many to create

<LClick> [OK], <RClick> to finish.



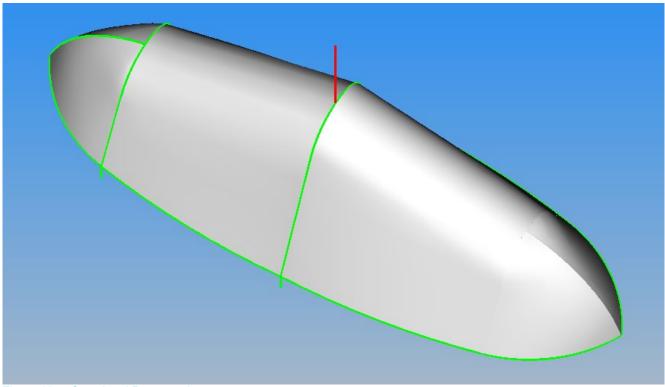



Figure 165 - Completed Rotate option

Using the Rotate option removes the need to reverse any surface sides to create a correct looking model.

Both methods are viable and will work in most scenarios, it all depends on how complex the part is, as to which is the more suitable to use.



## Creating the lower vertical side surfaces

This next process has many different methods that could be used to create the side surfaces, Ruled, Extruded, Patch, Swept, it all depends on the requirements and complexity of your actual parts as to which method is the best for the part.

The final part of the tutorial will just show you how to create a single Ruled Surface between two pieces of geometry on the upper and lower base profiles. How you create the entire run of surfaces is up to you.

Ensure that all the geometries you wish to work with are visible.

Using CAD > Show All Old is the easiest method.

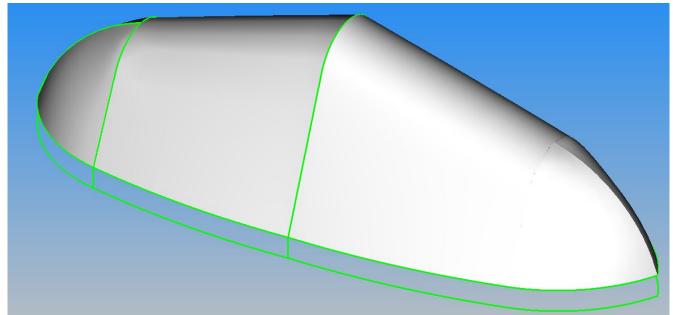



Figure 166 - Geometries for vertical surfaces



|                               | - / |             |
|-------------------------------|-----|-------------|
| Select GEOMETRY > 3D Surfaces | -   | and the sur |

and the surface creation dialogue is displayed.

| 3D Surfaces                 | ×                          |  |
|-----------------------------|----------------------------|--|
| Туре                        |                            |  |
| O Swept Surface (2 Curves)  | O Swept Surface (3 Curves) |  |
| O Coons Patch (4 Curves)    | O Coons Patch (3 Curves)   |  |
| Ruled Surface (2 Curves)    | ◯ Surface of Revolution    |  |
| O Fillet Between 2 Surfaces | ◯ Tri-Comer Fillet         |  |
| O Surface from Sections     | O Extruded Surface         |  |
| ◯ Flat Surface              |                            |  |
| Edge Tolerance 0.1          |                            |  |
| OK Cancel                   |                            |  |

Figure 167 - Surface creation options

Select **Ruled Surface (2 curves)** then **<LClick> [OK]**. When prompted, select two lines as shown below.

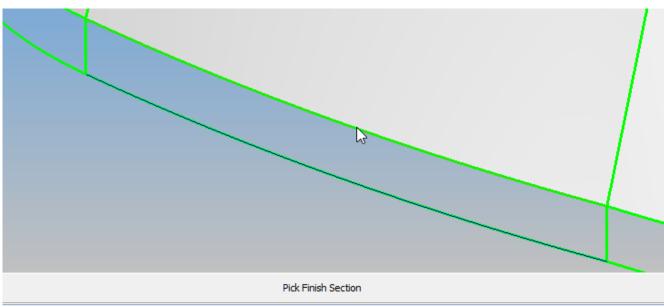



Figure 168 - Geometries for vertical surfaces



Once you have chosen the, the surface precision option is displayed.

The default options will always create a suitable surface, but is you need more accuracy for machining, then having more control lines is beneficial.

| Generate Surface                   | ×      |  |  |  |  |
|------------------------------------|--------|--|--|--|--|
| Number of Steps along First Edge 🧧 |        |  |  |  |  |
| ОК                                 | Cancel |  |  |  |  |

Figure 169 - Surface quality options

<LClick> [OK] to complete the process.

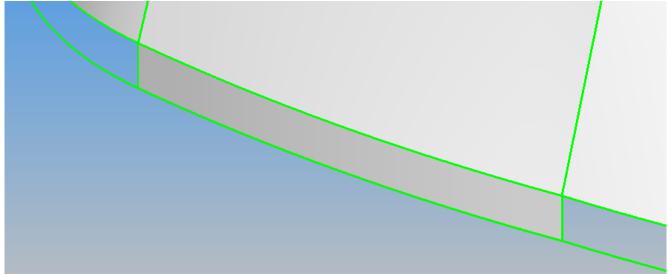
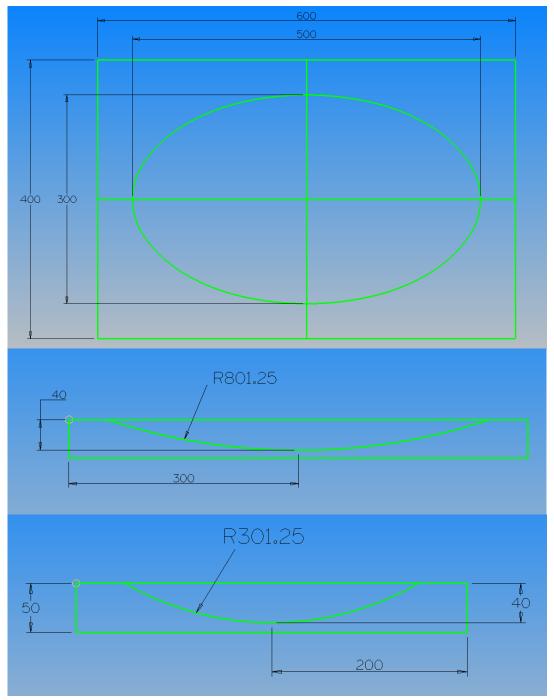


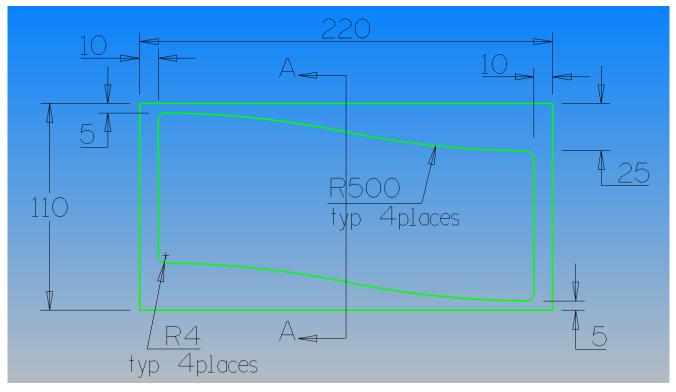

Figure 170 - Complete vertical surface

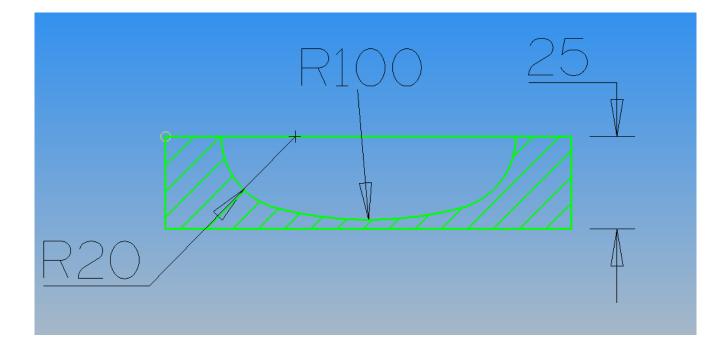
Complete the remaining sections of the geometry, remember that you may have to adjust your geometry or method depending on the situation.


You may also need to use 3D > Reverse Tool Side to set the correct outside faces.

Save your completed part with a suitable name.



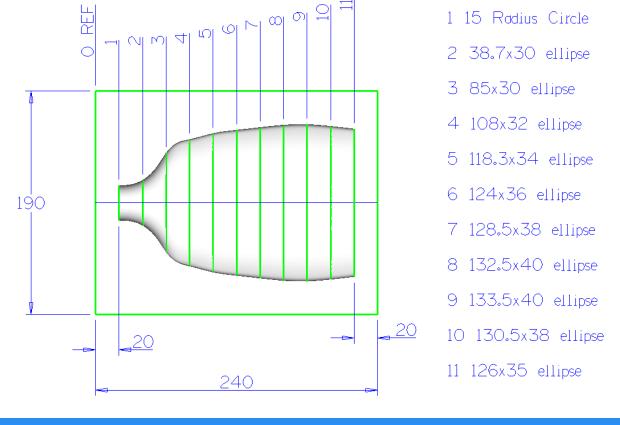

# Examples

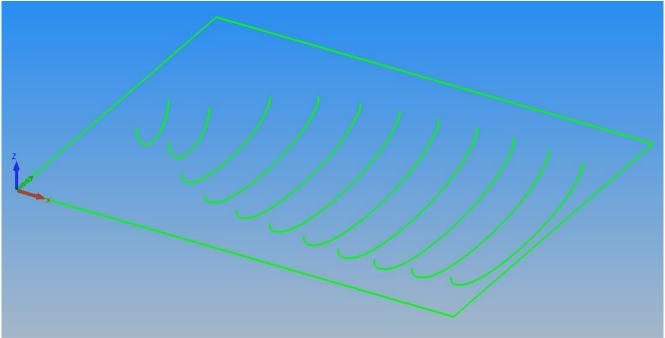

# Elliptical Dish





# **Curved Dish**






# Surface from Sections

Sections at 20mm Centres







### Version amendments

| V  | Amendment Description                | Α | Software Version | Amended Date |
|----|--------------------------------------|---|------------------|--------------|
| 12 | Minor test updates                   | 1 | 2020.1           | 10/10/2019   |
| 12 | Template altered to Hexagon branding | 0 | 2020.0           | 15/03/2019   |





# ALPHACAM

Floor Two No. One, Waterside Drive Arlington Business Park Theale Reading Berkshire RG7 4SA United Kingdom Tel.+44 (0) 1189 226677 Email. alphacaminfo@hexagon.com Web. www.alphacam.com

Support. support.alphacam.uk@hexagon.com Portal. customers.ps.hexagonmi.com

